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Praca doktorska „Zastosowanie modeli dyskretnych do opisu propagacji rys w
materiałach kruchych” została podjęta z uwagi na fakt, że bardzo istotne jest pozna-
nie mechanizmu powstawania lokalizacji odkształceń w materiałach kruchych takich
jak beton (rysy i strefy ścinania) na poziomie mikroskopowym. Poznanie to daje
możliwość bardziej realistycznego wymiarowania elementów konstrukcji betonowych
i żelbetowych oraz przewidywania stanów zniszczenia istniejących konstrukcji.
W pracy został opracowany trójwymiarowy dyskretny model opisujący zacho-

wanie się elementów kruchych (beton) poddanych różnym stanom obciążenia. Model
uwzględnia wszystkie najważniejsze składniki betonu: kruszywo, cement, oraz połą-
czenia kruszywa z cementem. W opracowanym modelu składniki te są opisane elemen-
tami belkowymi z uwzględnieniem ściskania, rozciągania, ścinania, skręcania i zgina-
nia. Elementy posiadają trzy parametry opisujące ich własności (sztywność wzdłużna,
giętna i skrętna) oraz jeden parametr wytrzymałościowy (maksymalne odkształce-
nie elementu przy rozciąganiu). Belka jest usuwana z materiału, jeżeli przekroczony
zostanie parametr wytrzymałościowy. W drugim modelu, opisanym w załączniku,
beton jest modelowany elementami sferycznymi, które są połączone elementami bel-
kowymi. Elementy sferyczne działają wg. zmodyfikowanego prawa Mohra-Coulomba
z uwzględnieniem kohezji.
Praca składa się z 6 rozdziałów i 3 załączników. Rozdział drugi prezentuje prze-

gląd modeli dyskretnych wykorzystywanych do modelowania betonu. Przedstawiono
opis sferycznej metody dyskretnej DEM, metodę beleczkową, model z nieliniowym
interfejsem oraz model z ograniczonym ścinaniem.
Trzeci rozdział prezentuje zastosowanie metody fotogrametrycznej DIC podczas

zginania belek z nacięciami do pomiaru odkształceń na powierzchni betonu.
W kolejnym, czwartym rozdziale zamieszczono szczegółowe wzory oraz metodę

obliczeniową w beleczkowym modelu dyskretnym. Omówiono szczegółowo aspekty
obliczeniowe oraz właściwości nowo powstałego modelu.
Rozdział piąty prezentuje wyniki weryfikacji modelu. Weryfikacja obejmowała

sprawdzenie zbieżności wyników numerycznych z wynikami eksperymentalnymi wła-
snymi i z literatury. Przeprowadzono symulacje numeryczne na testy ściskania, roz-
ciągania, zginania oraz łączonego ścinania z rozciąganiem.
Rozdział szósty podsumowuje wyniki osiągnięte w pracy doktorskiej.
Pracę kończą trzy załączniki prezentujące wyniki modelowania przepływu ma-

teriałów granulowanych przy zastosowaniu aparatu komórkowego, wyniki symulacji
betonu metodą dyskretną DEM oraz opis kwaternionów zastosowanych do modelo-
wania obrotu.
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Chapter 1

Introduction

Engineering materials such as sand, concrete, rock, ceramics and polymers have common

properties like heterogeneity, anisotropy, discrete structure and nonlinear behavior. To de-

scribe them, two kinds of numerical models have been developed: continuum models (within

fracture, damage, softening plasticity mechanics) and discrete models (molecular dynamics,

discrete element method, lattice models). The fracture which is a typical discontinuity in

brittle materials, poses big difficulties when using classical constitutive laws without mi-

crostructure due to their inability to correctly predict the mechanism of its occurrence.

This thesis will present a discrete model for simulating a fracture process in brittle mate-

rials which contributes to a better description and understanding of the mechanism of fracture

in brittle materials at the meso–level.

1.1 Phenomenon and Problem

Fracture process is a fundamental phenomenon in brittle materials [8]. It is a major reason

of damage in brittle materials under mechanical loading contributing to a significant degra-

dation of the material strength. It is highly complex due to a heterogeneous structure of

brittle materials over many different length scales, changing e.g. in concrete from the few

nanometers (hydrated cement) to the millimeters (aggregate particles). Therefore, the ma-

terial heterogeneity should be taken into account when modelling the material behavior. At

the meso–level, concrete can be considered as a three–phase material consisting of aggregate,

cement matrix and interfacial transition zone (bond). A realistic description of the fracture

process is of major importance to ensure safety of the structure and to optimize the behavior

of material.

The discrete models currently used to describe the behavior of concrete are very complex

which allows them to operate at a higher scale of discretization but makes it difficult to

understand the underlying nature of the material. Another possibility is to use a simple

constitutive law at a smaller scale of discretization, but it has prohibitive requirements with

respect to memory and computational time. This second possibility was taken advantage of

in this thesis.

1
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1.2 Aims

The goals are:

a) to create a three–dimensional discrete lattice model to describe the behavior of quasi–

brittle materials at the meso–level (eg. concrete and reinforced concrete) under differ-

ent load conditions (tension, compression and combined shear–extension),

b) to compare the results of this model with results of experiments (own and from litera-

ture),

c) to examine the effect of aggregate density and interfacial zones on the fracture process,

d) to investigate a size effect (dependence of nominal strength on the specimen size).

The new model is of an explicit type which allows for an easy distribution of calcula-

tions on several computers and multiple processors to reduce the computation time. The

constitutive law used is simple elastic to further reduce the computation effort.

1.3 Structure of thesis

This thesis contains 6 chapters and 3 appendices. Chapter 2 reviews already existing dis-

crete models used to describe the behavior of concrete. Presented models are the discrete

element method, the classical lattice–beam model, the nonlinear interfacial zone model and

the confinement–shear lattice model.

Chapter 3 presents a digital image correlation technique for measuring the surface strain

in concrete. A novel software was written to perform the digital image correlation technique.

The experimental results were compared with the numerical results of the discrete model.

Chapter 4 presents a novel lattice model developed by the author. In contrast to other lat-

tice models, a geometric type lattice model was used. Owing to that, the computational effort

was reduced. The method of generating the aggregate structure and one of two mesh gener-

ation methods were taken from literature. The aspects of computation and the properties of

the model are discussed.

Chapter 5 presents the verification of the model. The results of simulations were com-

pared with own experimental results and experimental results from literature. The numeri-

cal tests of uniaxial tension, uniaxial compression and combined extension–shear were per-

formed. The influence of aggregate structure on the results was examined.

Chapter 6 includes conclusions.

Appendix A describes two discrete cellular automaton models to calculate the kinematics

of non–cohesive granular materials. The results were compared with mass and funnel flow

experiments in a model silo made of perspex.

Appendix B deals with the problems of the modern software design applied to numerical

simulations such as a discrete element method DEM, finite element method or a lattice model

presented in Chapter 4. A new software framework was written in C++ by the author of this

thesis in cooperation with University Joseph–Fourier in Grenoble. The software currently is

in the development stage.

Appendix C briefly explains the basics of quaternion rotations used in the lattice model.
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1.4 Novelties

The novelties in this thesis are following:

a) a novel lattice model of a geometric type (according to the own idea),

b) application of a DIC technique to measure strain on the surface of concrete beams

(according to the own idea),

c) application of a cellular automaton to investigate the kinematics of granular flow in

silos.
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Chapter 2

Literature review

The phenomenon of the propagation of the fracture process in brittle materials can be mod-

elled with continuous and discrete models. Continuum models describing the mechanical

behavior of concrete were formulated within among others non–linear elasticity [87, 101,

114], rate–independent plasticity [21, 86, 104, 108, 121], damage theory [23, 53, 55, 117],

endochronic theory [9, 14], coupled damage and plasticity [48, 77, 86] and microplane the-

ory [12]. To model the thickness and spacing of strain localization properly, continuum

models require an extension in the form of a characteristic length. Such an extension can by

done with strain gradient [33,109,115–117,163], viscous [144,145] and non–local terms [7,

10, 20, 122]. Other numerical technique which also enables to remedy the drawbacks of a

standard FE-method and to obtain mesh–independent results during the description of the

formation of strain localization is a strong discontinuity approach allowing a finite element

with a displacement discontinuity [3, 142, 161].

Within discrete methods, the most popular ones are: classical particle DEM [38, 45,

54, 72, 73, 151, 164], interface element [26–29], lattice methods [74, 99, 136, 154–159] and

confinement–shear lattice models [39–43, 148]. Those models are a realistic alternative to

nonlocal continuum models for a fracture phenomenon. They automatically exhibit the size

effect, and eliminate problems with mesh sensitivity of local continuum models. Compared

to nonlocal continuum models, the random particle or lattice models have several advantages:

allow a straightforward implementation of the material heterogeneity which is projected on a

lattice and corresponding properties are assigned to relevant lattice elements and they allow

to simulate the development and propagation of fracture in brittle materials consisting of a

main crack with various branches, secondary cracks and microcracks.

2.1 Classical spherical discrete elements model

The DEM1 [38,45,54,72,73,151,164] method was initially developed by Cundall in 1979 for

the analysis of rock. It is a numerical model capable of describing the mechanical behavior of

assemblies of discs and spheres. It uses an explicit numerical scheme in which the interaction

of the particles is monitored contact by contact with states of equilibrium. The equilibrium

contact forces and displacements of a stressed assembly of spheres are found through a series

of calculations tracing the movements of the individual particles. These movements are the

result of the propagation through the medium of disturbances originating at the boundaries (a

1Distinct Element Method or Discrete Element Method or Spherical Discrete Element Code (SDEC)
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Figure 2.1: An interaction between spherical dis-

crete elements, overlaps exaggerated for clar-

ity [54, 71–73]
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Figure 2.2: Elastic interaction, normal and shear

springs (Kn,Ks respectively) [54]

dynamic process). The motion of the particles is modelled particle by particle. The DEM is

based upon the idea that the time step chosen may be so small that during a single time step

disturbances cannot propagate from any sphere further than its immediate neighbors. Then

at all times the resultant forces on any sphere are determined exclusively by its interaction

with the spheres with which it is in contact. It is the key feature of DEM, which makes it

possible to follow a non–linear interaction of a large number of particles without excessive

memory requirements or the need for an iterative procedure.

The calculations performed by DEM alternate between the application of the Newton’s

second law to spheres:

F = ma, (2.1)

and force–displacement law at contacts:

Fn = Kn∆un,
Fs = Ks∆us,

(2.2)

where Kn – normal stiffness at contact, Ks – tangential stiffness, ∆un – relative particle normal

displacement, us – incremental tangential displacement, a – acceleration (Figs. 2.1 and 2.2).

The Newton’s second law gives the acceleration of a particle resulting from the forces acting

on it. The force–displacement law is used to find contact forces from displacements. In

general case of an assembly of many spheres, the force–displacement law is applied at each

contact of any sphere and the vectorial sum of these contact forces is determined to yield

the resultant force acting on that sphere. When this has been accomplished for every sphere,

new accelerations are calculated from Newton’s second law. This procedure is repeated in a

loop.

The deformations of individual particles are small in comparison with the deformation

of a granular assembly as a whole. The latter deformation is due primarily to the movements

of the particles as rigid bodies. Therefore a precise modelling of the particle deformation

is not necessary to obtain a good approximation of the mechanical behavior. Consequently

the particles are allowed to overlap one another at contact points, and this behavior takes

the place of the deformation of individual particles. The magnitude of the overlap is related

directly to the contact force. These overlaps are small in relation to particle sizes. The

boundary conditions are of a strain controlled type. The movement of the wall is defined in

terms of the velocity and angular velocity. For the purpose of assigning physical properties

to the spheres and walls, they are divided into groups such that all entries of a group have the
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Figure 2.3: View on a cylindrical DEM specimen

of concrete [54, 71–73]
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Figure 2.4: Rupture criterion used in the DEM

model [54]

(a) (b)

Figure 2.5: Distribution of forces in a two dimensional DEM sample subject to compression:

(a) results obtained from experiments by means of photoelastic analysis [49];

(b) results from DEM simulation [38]

same properties. Assigning a single type number to each sphere or wall is then sufficient to

associate with it the appropriate set of properties. The physical properties treated in this way

include sphere radius, density, cohesion, inter–particle friction coefficient, shear stiffness

and normal stiffness. There are other parameters that apply to field as a whole, defining the

contact damping, global damping and the fraction of the critical time step.

Donzé and Hentz [54, 73] have extended a classical DEM model by introducing an in-

teraction range, which allows setting of an interaction between two spheres which are not in

contact. A pair of particles sustains tensile forces, which can be used for simulating a bond

between them, which in turn allows to simulate concrete behavior (Fig. 2.3). The bond can

be broken when a tensile force exceeds a maximum tensile force F min
n . Figure 2.4 shows

a modified Mohr–Coulomb rupture criterion used in the model. It is assumed that linked

spheres (forming a body of concrete) can sustain higher forces than those of the non–linked

contact. After the initial interactions have broken, new ones are identified, which are not

cohesive any more: they are merely contact interactions, and cannot undergo any tension

force. Then a classical Coulomb criterion is used with a contact friction angle, φc. This

allows simulating complex macroscopic behaviors such as strain softening or fracture that
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(a)

(b)

Figure 2.6: A DEM specimen of reinforced concrete subject to bending, an experiment performed by

Hentz [71]: (a) the experiment; (b) result from DEM simulation

arises from micro–cracking throughout the assembly.

When DEM was first introduced it was validated by De Josselin de Jong and Verruijt [49]

using photo–elastic analysis on the assembly of discs (Fig. 2.5). Those results showed a lot

of promises for DEM and the model was pursued in years after with many enhancements.

Nevertheless, this is a rather simple way to model the complexity of the microscopic phe-

nomena, and in particular, particle rotations are not realistically constrained. To simulate

granular and cohesive materials, different solutions were proposed: Potyondi proposed el-

ements of irregular shape [124, 125], Calvetti et al. proposed to inhibit the rotations [30].

Iwashita et al. proposed to convey the rotation between particles by the introduction of a

law couple/rotation [78–80] to obtain a reasonable friction angle. Hentz used the first two

methods [71]. Figure 2.6 shows his experiment with a beam subject to asymmetric bending.

2.2 Classical lattice–beam fracture model

The lattice model was first introduced by Hrennikoff [75] in 1941. He demonstrated that

a regular triangular lattice of bars (a truss) with Poisson’s ratio fixed at 1/3 is capable of

solving problems of continuum elasticity. At that time the computer’s power was insufficient

to continue investigation thus the work stalled till 1989 when Herrmann [74] proposed to use

beam elements instead of bars and to use a regular or random lattice. He laid foundations

for a classical lattice model introduced by van Mier, Schlangen, Lilliu and van Vliet [15, 99,

133–138, 153–158].

The main purpose of a classical lattice model is to describe the fracture process in con-

crete or reinforced concrete. Each quasi–brittle material is discretized as a network of two
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Figure 2.7: Normal, shearing force and momentum on lattice beam [154]
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Figure 2.8: Classical lattice types: (a) regular square lattice presented in [74]; (b) regular triangular

lattice presented in [137]; (c) random lattice presented in [154]

noded Bernoulli beams (Fig. 2.7) that transfer normal forces, shear forces and bending mo-

ments. In this model the size of the beams must be adjusted to achieve desired Poisson’s

ratio. For an orthogonal lattice (Fig. 2.8 a), the Poisson’s ratio is always zero, but for a reg-

ular triangular or random lattice (Fig. 2.8 b,c) a different Poisson’s ratio (excluding negative

values) can be set depending on the height over length ratio of the lattice beams.

Figure 2.9 shows the generation of a random lattice. First a square grid with spacing g

is made. In each box of the grid, a point is selected at random inside a sub–square of the

size s. The points are connected in quadrilaterals and each quadrilateral has an additional

connection along the shorter diagonal. The lattice randomness can be varied by changing s.

For s = 0, an orthogonal lattice is obtained, when s > g the obtained mesh is highly irregular.

The generated lattice has a spatial directional bias and in fact has nothing to do with concrete,

or any other brittle material. To perform realistic computations of concrete, the material

structure must be directly projected on the lattice.

Concrete is a multi–phase material consisting of aggregates, pores, cement matrix and

an interface between aggregate and matrix. For computational reasons, it is impossible to

model the concrete down to the smallest particle in the material structure. A widely ac-

cepted limit of the smallest aggregate diameter in the lattice is 2 mm [154]. The aggregates

are assumed to be spherical and are embedded in a homogeneous matrix. First, a particle

structure is generated. Currently there are two widely used methods. The first one allows to

obtain a dense packing of aggregates in three dimensional body of concrete by using a Fuller

distribution [154]:

p = 100

√
(

D

Dmax

)

, (2.3)

where p is the weight percentage of particles passing a sieve with diameter D, and Dmax

is the size of a largest particle. Furthermore by using a cumulative distribution for a two–

dimensional cross section derived by Walraven [154,160], the circle diameters for a concrete

sample can be generated. The second method of particle generation used by Eckard [60]
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Table 2.1: Beam strengths for different material phases; [154]

Phase Young’s modulus Maximum stress Maximum strain

Interface bond Eb = 25 GPa fb = 1.25 MPa εb = 0.005%

Cement matrix Em = 25 GPa fm = 5 MPa εm = 0.02%

Aggregate Ea = 70 GPa fa = 10 MPa εa = 0.0143%

is more straightforward. First, a grading curve is chosen (based on experimental measure-

ments). Next, the certain amounts of particles with defined diameters d1, d2 . . . dn are gener-

ated according to this curve (Fig. 2.10). The author of this thesis used the latter method in his

work (Sect. 4.5.1). No matter which method is used, the particle structure of concrete can be

generated as shown on Fig. 2.11. The circles (or spheres in three–dimensions) are randomly

placed in the prescribed area starting with the largest ones and preserving a certain mutual

distance [154]:

D > 1.1
D1 +D2

2
, (2.4)

where D is the distance between two neighboring particle centers and D1 and D2 are the

diameters of two particles. The next step is to overlay the generated particle structure with

a lattice as shown in Fig. 2.11 b. The lattice beam length should be less than lb < dmin
a /3,

where dmin
a is the minimum aggregate diameter. With assumed dmin

a = 2 mm, the maximum

lattice length is 0.7 mm. Otherwise the computational effort would become large. Moreover,

to restrict the computational effort, a lattice model is applied only in the area where cracks

are expected to occur (Fig. 2.12).

After the lattice is projected on top of the particle structure, different properties (Tab. 2.1)

are assigned to beams appearing in different material phases: aggregate, matrix or bond

(Fig. 2.11 c). A bond is defined as a beam that has one node inside an aggregate and other

node inside cement matrix or other aggregates. Van Mier has assumed [154] that the modulus

of elasticity for the bond is equal or smaller to that of the cement matrix (Tab. 2.1). The bond

properties influence significantly the results (Sect. 5.3).

g

s
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?
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?

Figure 2.9: Construction of a random lat-

tice [133]
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Figure 2.10: Approximation of the grading curve

with discrete number of aggregate sizes [40]
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Normal forces, shear forces and moments are calculated using a conventional simple

beam theory. The stiffness matrix is constructed for the entire lattice. The displacement

vector is calculated using conventional FEM. Fracture is simulated by performing a linear

elastic analysis up to the failure under loading and removing a beam element that exceeds

maximum effective stress (Eq. 2.5, Tab. 2.1). To solve FEM, a gradient method is found

to be most useful [135], because using it, the beam removal is a local effect and only few

iterations are needed to relax the system. Then the next critical beam is identified and the

above procedure is repeated. The effective stress first proposed by van Mier then extended

by van Vliet [154, 156] is a combination of normal stress and flexural stress in the beams:

σ =
N

A
±α

max(|Mi|, |M j|)
W

, (2.5)

where N is the normal force in the beam, Mi, M j are bending moments in the nodes i and j,

A = bh is the beam cross–section and W = bh2/6 is the section modulus. The α parameter

is used for varying the amount of bending. When it decreases, the compressive behavior

changes from brittle to ductile one. The value of α = 0.005 is usually used [156].

An example simulation performed by Schlangen [138] (Fig. 2.12) shows a specimen in a

four point shear test used to study the crack growth under a combination of mode I (tensile)

and mode II (in–plane shear) loading. The experimentally obtained crack has a curved shape

(Fig. 2.12 a) due to rotation of the direction of the maximum tensile stress. To perform

computations, only a middle 10 × 10 cm part of the specimen is discretized with lattice

beams, the rest is a regular FEM mesh. The final crack pattern is shown on Fig. 2.12 b, and

agrees with the experimental one.

Summarizing, the classical lattice model [15,99,133–138,153–158] can identify micro–

cracking, crack branching, crack tortuosity and bridging which leads to the fracture process

to be followed until complete failure. It enables also to capture a size effect during ten-

sion [159]. The advantages of this approach are simplicity and a direct insight in the fracture

process on the level of the micro–structure. A complex crack patterning can be reproduced.

Therein a limited number of parameters is needed. By applying an elastic–purely brittle local

fracture law at the particle level, global softening behavior is observed. The fracture process

is realistically described, in particular, when the mode I failure prevails. The disadvantages

of this model are the following: when calibrated to correctly predict tensile cracking, it over-

(a) (b)

HHj
interface

��*
aggregate

?
cement matrix

(c)

Figure 2.11: Particle structure in the classical lattice–beam model: (a) generated particle structure

of concrete; (b) example of the projection of regular triangular lattice on the generated structure; (c)

definition of aggregate, cement matrix and interface bond [137, 154]
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Figure 2.12: Four point shear test: (a) initial configuration and experimental crack pattern; (b) simu-

lation performed by Schlangen and van Mier [138]

predicts the uniaxial compressive strength, the response of the material is too brittle (due to

the assumed brittleness of single beams), the compressed beam elements overlap each other

and a big computational effort is needed. The first and second drawback can be improved by

applying a non–local approach for beam deformations, as proposed by Schlangen [136], and

also by a 3D version by Lilliu [99] which increases the amount of the crack face bridging

and dissipated energy. The computational effort was recently reduced by using a conjugate

gradient solver [136]. In this algorithm, breaking an element and removing it from the lattice

was a local effect, and the solution required only a few iterations.

2.3 Nonlinear interfacial zone model

The three-dimensional nonlinear interfacial zone model was developed by Caballero, Carol

and López [26–29], based on earlier work by Carol and López [32]. In this approach, the het-

erogeneous concrete is discretized as a composite material of the larger aggregates embedded

in a matrix phase representing mortar plus smaller aggregates. The polyhedric geometry is

numerically generated by a standard Voronoi/Delaunay tessellation. Both continuum–type

components are considered linear elastic and are represented as tetrahedron FEM elements.

The possibilities of failure are provided by zero–thickness interface elements (that use a co-

hesive fracture constitutive law) which are inserted between all particle–matrix interfaces

and also along selected matrix–matrix inter–element boundaries representing the main po-

tential crack patterns. The purpose of nonlinear interfacial zone model is to reproduce in 3D

the experimental behavior of concrete: representation of crack patterns, stress–strain curves
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(a) (b) (c)

(d) (e) (f)

Figure 2.13: Discretization process: (a) regular distribution of points; (b) each point displaced by

a random vector; (c) Delaunay mesh obtained from points; (d) aggregates obtained from Voronoi

polyhedrons; (e) filling space between polyhedrons by mortar; (f) specimen after cutting [27]

and material failure mechanisms.

Figure 2.13 a,b shows the first step of model generation [26–29]: a 3D space is filled by

regular distribution of points, then each point is randomly displaced (compare with Fig. 2.9).

On those points, a Delaunay tetrahedral mesh is generated (Fig. 2.13 c). The duality between

Delaunay and Voronoi spaces allows to uniquely obtain Voronoi polyhedrons by connecting

centers of each tetrahedron with all its neighbors (see 2D example on Fig. 2.15). Those poly-

hedrons are guaranteed to be convex and each of them contains inside exactly one initially

generated point. Next step is to shrink each of them by a certain factor (random or based

on grading curve, Fig. 2.10), from now on those convex polyhedrons will be the aggregates

in concrete (Fig. 2.13 d). Next, the space between aggregates is filled with the volume of

mortar and smaller aggregates (Fig. 2.13 e). From generated mesh a smaller specimen is cut

out so that its faces are planar (Fig. 2.13 f). Then using the aggregate’s central point and

points lying on the center of all its surfaces, the polyhedron is subdivided into tetrahedron

volumes. Next the zero–thickness failure interface planes are inserted along all potential

fracture surfaces, those include: the aggregate surfaces, new subdivisions of mortar defined

by two parallel edges belonging to opposite aggregates (Fig. 2.14 a, top) and new subdivi-

sions of mortar by means of each aggregate edge and a point located in the center of space

between two polyhedrons facing each other (Fig. 2.14 a, bottom). Figure 2.14 b shows a

view of the part of generated specimen.
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(a) (b) (c)

Figure 2.14: Discretization process: (a) generation of potential failure surfaces (b) view of the part of

generated specimen (c) final result of specimen generation [27]
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Figure 2.15: The Delaunay triangulation (thick

lines) and Voronoi tessellation (thin lines) are

dual to each other in the graph theoretical sense.

Figure 2.16: Interface cracking law: fracture sur-

face F (a) and its evolution (a,b,c) [27]

At this stage the geometry is already subdivided in tetrahedrons, but in the process some

extremly short edges, surfaces with very small angles or excessively flat volumes were gener-

ated. To fix this, a ,,geometry collapse” process is performed by merging all vertices that are

very close to each other and eliminating disproportional volumes. The cleansed mesh is still

too coarse for straightforward turning each tetrahedron into a FEM element, and first an addi-

tional tetrahedron subdivision is performed. When specimen discretization with continuum

elements is done, the zero–thickness interface elements are introduced along all potential

fracture surfaces. This is done by simple duplication of nodes and changes in FEM element

nodal connectivities. This process increases the number of nodes considerably, while the

number of continuum elements remains unchanged. Figure 2.14 c shows the final result of

specimen generation.

The continuum tetrahedron FEM elements show the elastic behavior. The zero–thickness

interface FEM elements have the nonlinear behavior formulated in terms of one normal and
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(a) (b)

Figure 2.17: The deformation and crack pattern for concrete specimen under uniaxial: (a) tension;

(b) compression [26]

two tangential traction components on the contact surface, σ = (σN,σT1,σT2). The con-

stitutive formulation is related to work–softening elasto–plasticity, in which plastic relative

displacements can be identified as crack openings [26–29]. The initial yield surface F = 0

is given as a three parameter hyperboloid (Fig. 2.16): χ is the maximum tensile strength,

C is asymptotic cohesion and φ is a friction angle. When cracking starts, the loading sur-

face begins to shrink. This is achieved by means of softening laws in which the surface

parameters are functions of the work of the fracture process. Under pure tension, the load-

ing surface (Fig. 2.16 a) moves to become another hyperboloid starting at the coordinate

origin (Fig. 2.16 b). Under mixed–mode it degenerates further, asymptotically becoming a

cone (Fig. 2.16 c) that represents the residual friction after all interface roughness has been

eliminated.

An example simulation performed by Caballero [26] with a specimen consisting of 14

aggregates (5755 tetrahedra and 3991 interface elements). The material parameters used by

Caballero are similar to those proposed by van Mier (Tab. 2.1): Ea = 70 GPa, Em = 25 GPa

and Poisson’s ratio ν = 0.2 for mortar and aggregate. The specimen is subject to uniaxial

tension and compression. Figure 2.17 shows the crack pattern in the deformed specimens

subject to load. The results are in good agreement with laboratory experiments.

Summarizing, the nonlinear interfacial zone model has following advantages: a realistic

representation of stress–strain curve in tension and compression as well as crack patterns

and their evolution, the localization process is spontaneously starting from disturbed micro–

cracking and leading to macro–cracks that cross the specimen. The disadvantages of the

model are following: the zero–thickness elements multiply the number of nodes by a factor

of five, which enchances the calculation cost [27], the model exhibits a mesh dependency

and is restricted by deformation capabilities of finite elements.
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2.4 Confinement–shear lattice model

The confinement shear lattice model developed by Cusatis et al. [39–43] simulates the con-

crete meso–structure by means of a three–dimensional lattice in which the nodes are the

centers of coarse aggregates pieces, and the adjacent aggregates are connected by struts. The

topology of strut connections is obtained by a three–dimensional Delaunay triangulation.

The struts reproduce interaction between connected aggregates through the embedding ma-

trix using a nonlinear damage–like constitutive relation which exhibits fracture, friction and

cohesion at the meso–level.

The confinement shear lattice model can describe a nonlinear uniaxial, biaxial, and tri-

axial response in compression, strain localization and mixed–mode crack propagation in

concrete.

A specimen generation begins with a random placing of spheres (aggregates) from large

to small in the prescribed 3D space. The diameters are given by a grading curve (Fig. 2.10),

using a Fuller distribution (Eq. 2.3). If a newly placed sphere overlaps an already existing

sphere or crosses the specimen’s boundary, another random coordinate is chosen. Addi-

tionally the zero-radius spheres are placed at specimen boundary with a similar spacing as

spacing inside the specimen. This enables discretizing the surface without effort because the

boundary zero–radius aggregates are treated similarly as other aggregates. Next a Delaunay

triangulation is performed treating each aggregate’s center as a tessellation node (Fig. 2.13 c).

Each tetrahedron’s edge is a strut that connects the aggregates and its cross-section area

must be determined somehow. This cross–section is also a contact area between the two

aggregates. The Voronoi tessellation (Fig. 2.15) is unsuitable for this purpose, because the

cross–section would be always at the midpoint of the tetrahedron edge and could intersect an

aggregate. Therefore to obtain the area, a different tessellation method is used. Figure 2.18 a

shows this tessellation performed in 2D. First the midpoints are calculated: on the strut (an

edge) it is a midpoint of mortar between the two aggregates, inside the Delaunay triangle

it is a center of mass of triangle without the aggregate volumes. The cross–section of the

strut (Fig. 2.18 a,b) is defined by points A, B and C. In three dimensions along with previ-

ously defined points A, B and C on the tetrahedron’s triangular face, an additional point D

must be used: the center of mass of the tetrahedron without sphere volumes (Fig. 2.18 c)

Figure 2.18 d shows an example three dimensional cell containing an aggregate.

For the sake of simplicity, the constitutive law is imposed on a projection of this area

on a plane orthogonal to the strut and containing point B of the tessellation (Fig. 2.18 e,f).

The contact point E is the the center of mass of the projected area, which implies extra

momentum in the contact and is necessary for a realistic simulation [42].

The strut simulates a contact layer of mortar (and smaller aggregates) between two ad-

jacent aggregate particles and can transmit both normal and shear stresses. The shear and

normal displacement are calculated in the middle of the contact zone from the relative rigid

body motion of two adjacent particles. The displacement is then divided by the strut length

assuming uniform normal (εN) and shear strain (εT ) over its whole length.

The constitutive relation is described in [40]. In short, the elastic behavior can be charac-

terized as σ = Eε or equivalently as σN = ENεN and σT = ET εT where EN = E and ET = αE.

The constant α is the ratio between normal and tangential stiffness of the strut and controls

macroscopic Poisson’s ratio ν . The value of α = 0.25 causes ν = 0.18.

The inelastic behavior, simulating damage, fracture and plasticity at the meso–level is

formulated assuming the effective stress σ to be governed by a strain–dependent function
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Figure 2.18: Discretization process: (a) example of two–dimensional tessellation (thin lines) of De-

launay triangulation (thick lines) with two aggregates in the middle, and boundary aggregates with

zero radius around; (b) the geometry of the strut; (c) cross–section surface generated for upper ag-

gregate of tetrahedron; (d) three dimensional cell containing an aggregate; (e) cross–section surface

of the strut; (f) a simplified cross–section obtained by projecting it on a plane orthogonal to strut’s

direction [42]
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which for non–cyclic loads is expressed as:

σb(ε,ω) = σ0(ω)exp

(
K(ω)

σ0(ω)

〈

ε − σ0(ω)

E

〉)

, (2.6)

in which 〈•〉= max(•,0). Function σ0(ω) is the initial effective strength function which de-

limits the elastic domain in the stress space (Fig. 2.19 a). It is a hyperbola with an ellipsoidal

cap in compression and is defined by: tensile strength σt , shear strength σs, compressive

strength σc, slope µ of the hyperbola asymptote and aspect ratio β of the ellipsoidal cap.

For ω < ω0 there is hardening, and for ω > ω0 softening, while ω = ω0 is the transition

from a hyperbola to an ellipsoidal cap. The initial hardening–softening modulus is given by

the initial slope function K(ω) defined as (Fig. 2.19 b):

K(ω) =







Kc

(

1−
(

ω+π/2

ω0+π/2

)nc
)

for ω ≤ 0,

−Kt f (λ )
(

1−
(

ω−π/2

ω0−π/2

)nt
)

for ω > 0.
(2.7)

where Kc and nc govern the nonlinear compressive and shear–compressive behavior at meso

level, and parameters Kt and nt govern the nonlinear tensile and shear–tensile behavior.
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Figure 2.19: Constitutive law: (a) elastic domain at the strut’s cross–section; (b) initial slope func-

tion [40, 42]



2.4. CONFINEMENT–SHEAR LATTICE MODEL 19

Figure 2.20: Four point shear test, the specimen configuration at failure [42]

For ω > ω0, which includes pure shear (ω = 0) and pure tension (ω = π/2), the post–

peak slope is made sensitive to the confinement transversal to the connection (up arrow

on Fig. 2.19 b). This dependence is justified by the fact that the degree of the transversal

confinement must affect the resistance to the frictional pullout of crack–bridging fragments

and small aggregate pieces, which is known to cause softening to be gradual rather than

sharp. The confinement effect is introduced in Eq. 2.7 through the function:

f (λ ) =
1

1+ 〈−λ/λ0〉
, (2.8)

where λ is the confinement strain in each strut obtained by projecting orthogonally to the

connection the average strain of the adjacent tetrahedra. The strain tensor in each tetrahe-

dron is computed assuming a linear distribution of displacements and neglecting the effect

of particle rotations. The characteristic strain parameter λ0 determines the sensitivity to con-

fining strain.

In overall the constitutive behavior of each strut is softening for pure tension, tension

with shear, and shear with low compression. On the contrary, it is hardening for pure com-

pression and shear with high compression. The tensile and shear response of the connecting

strut is sensitive to the lateral confinement in directions orthogonal to the strut. The shear

response of the connecting struts exhibits friction and cohesion. The transmission of shear

forces between particles is effected without postulating any flexural resistance of the struts. It

should be noted that shear transmission is also obtained in the classical lattice model by van

Mier [155], but at the cost of treating the lattice struts as beams subject to bending, which is

considered unrealistic (not a physical phenomena in the microstructure). A different method

of a shear transmission using lattice elements is shown in Sect. 4.3.

An example simulation performed by Cusatis [42] in Fig. 2.20 shows a specimen in a

four point shear test (a combination of mode I and mode II). The crack pattern agrees with

the experimentally obtained one (Fig. 2.12 a), the load–deflection curve also agrees with the

experimental one [42].

Summarizing the confinement shear lattice model [39–43] can realistically simulate the

behavior of concrete in different types of deformation. The calculation is performed using

a mid–point explicit integration scheme. The advantages of the model are: it is suitable for

the failure mode I and II, it can realistically simulate many aspects of the material response

such as tensile fracturing, cohesive fracture and size effect or hydrostatic compression. The

disadvantages of the model are: it uses a complex macroscopic nonlinear stress–strain rela-

tionship to describe a microscopic local behavior, it is suitable only for quasi–static loading.

The last drawback is currently being worked on by Cusatis [43] by introduction of inertia

forces and creep.
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2.5 Summary

The above approaches to model concrete are not the only possibilities. To distinguish them

let us introduce a level of material representation L expressed as the average distance be-

tween discretization points. Figure 2.21 shows material representation on different scales,

as proposed by D’Addetta et al. [46]. Our scale of interest lies between ,,homogeneity” and

,,discontinuity” represented by lattice and particle models. At this scale two approaches are

possible: a finer discretization (L ≈ 1 mm) with a simpler microscopic law, and a coarse

discretization with a complex nonlinear macroscopic law (L ≈ 10 mm).

Figure 2.22 shows various discretization methods for L ∈ 〈1,10〉 mm, each of them uses

the same random distribution of points to allow a better comparison. The DEM (Fig. 2.22 a)

uses solely spherical elements. Starting from this basic discretization method the two di-

rections are possible with respect to filling a 3D space: using polygons (polyhedrons) that

inherently allow to completely fill the prescribed space or ignoring the problem and using

beams (or rods) that merely connect the points. Caballero [27] (Fig. 2.22 b) and Cusatis [42]

(Fig. 2.22 c) went the first way using a sophisticated generation method and a complex non-

linear law, which allowed to use L ≈ 10 mm. An intermediate approach was proposed by

Bazant [15], and Beranek [16] to use spheres and beams together (Fig. 2.22 d). In turn van

Mier chose the second way using a simple lattice (Fig. 2.22 e). Burt [25] and Berg [17]

proposed a more densely connected mesh while using an even simpler law (Fig. 2.22 f).

In general it can be observed that the smaller the L, the simpler law can be used, while

L ≈ 10 mm requires the softening to be introduced in the fracture law, making it more com-

plex. Additionally in terms of the computational efficiency there are two methods: implicit

and explicit. Using explicit method is preferred because it eases the calculation paralleliza-

tion to take advantage of recently popular multi–core processors. In turn, implicit methods

are inherently incompatible with distributed methods of calculation which poses additional

problems. Because of that, the current research trends indicate that when using a complex

law at L ≈ 10 mm, the law used is explicit [42]. In this aspect there is exactly one advantage:

explicit law (computation speed scales well with number of processors) and one disadvan-

tage: the law is complex. To author’s knowledge no one has yet tried an explicit formulation

at L ≈ 1 mm, which would have both advantages: a simple and explicit law.

Moreover a simple law at a smaller scale allows to better understand the underlying

mechanisms. The average length of beams is smaller than the smallest aggregate, thus the

material behavior is modelled directly by elements used for discretization.

For those reasons the author of this thesis decided to create a model which takes into

account a simple fracture law at a smaller level of representation (L ≈ 1 mm) with an explicit

formulation. The new model can be used in muti–scale simulations by coupling it with

higher scale models [42, 138].
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Figure 2.21: Levels of material representation at various scales as presented by D’Addetta [46]

(a) (b) (c)

(d) (e) (f)

Figure 2.22: Various discretization methods at different material scales using the same random distri-

bution of points (dark gray – aggregate, light gray – matrix or mortar, L – average point distance):

(a) discrete element method (Cundall [38], Donze [54]), L ≈ 10 mm;

(b) nonlinear interfacial zone model (Caballero et al. [27]), black lines: an interface L ≈ 10 mm;

(c) confinement–shear lattice model (Cusatis et al. [42]), bold black lines indicate a projected strut

cross–section: the interface between two aggregates, L ≈ 10 mm;

(d) particle–lattice model (Bazant et al. [15], Beranek [16]), L ≈ 5 mm;

(e) classical lattice–beam fracture model (Herrmann [74], van Mier [154]), beams that cross ma-

trix/aggregate boundary are interface, L ≈ 1 mm;

(f) random lattice–beam fracture model (Burt et al. [25], Berg et al. [17]), L ≈ 1 mm;
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Chapter 3

Experiments using digital image

correlation technique DIC

This chapter presents results of experimental investigations of strain localization in concrete

using a non–destructive method called Digital Image Correlation (DIC) technique. This

technique measures surface displacements from digital images. The model tests were carried

out with notched concrete specimens under three–point bending. 3 different beam sizes

and 2 different concrete mixes were used. During experiments, load–deflection curves and

evolution of fracture process zone were determined. The measured size effect in strength was

compared with the size effect law by Bazant [6] and experimental results by Le Bellégo [98].

3.1 Introduction

Strain localization in the form of fracture process zones (FPZ) is a fundamental phenomenon

in quasi–brittle materials like concrete [8, 13, 157]. The determination of the width and

spacing of strain localization is crucial to evaluate the material strength at peak and in the

post–peak regime. To properly describe strain localization (width and spacing), continuum

constitutive models should include a characteristic length of micro–structure [8]. There are

several approaches within continuum mechanics to include a characteristic length and to reg-

ularize the ill–posedness of the underlying incremental boundary value problem [47] caused

by strain–softening material behavior and localization formation (differential equations of

motion do not change their elliptic type during quasi–static calculations and hyperbolic type

during dynamic calculations), and to avoid a pathological mesh–sensitivity of numerical so-

lutions for quasi–brittle materials as: second–gradient [33, 115, 118], non–local [8, 20, 122]

and viscous ones [144,145]. Owing to them, objective and properly convergent numerical so-

lutions for localized deformation (mesh–insensitive load–displacement diagram and mesh–

insensitive deformation pattern) are achieved. Otherwise, FE–results are completely con-

trolled by the size and orientation of the mesh and thus produce unreliable results, i.e. strain

localization becomes narrower upon mesh refinement (element size becomes the characteris-

tic length) and computed force–displacement curves change considerably depending on the

width of the calculated localization. In addition, a premature divergence of incremental FE–

calculations is often met. The presence of a characteristic length allows also to take into ac-

count microscopic inhomogeneities triggering shear localization (e.g. aggregate size) and to

capture a deterministic size effect of a specimen (dependence of strength and other mechan-

23
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ical properties on the size of the specimen) observed experimentally on softening granular

and brittle specimens [8]. This is made possible since the ratio lc/D governs the response

of the model (lc is a characteristic length, D is the specimen size). The characteristic length

in brittle materials is usually related to the aggregate size. According to [122] and [11], it

is approximately 3× da, where da is the maximum aggregate size. It is usually determined

with an inverse identification process of experimental [66, 102] since it cannot be directly

measured. Recently Le Bellégo [98] presented a calibration method of non–local models

containing a characteristic length on the basis of 3 size effect bending tests. However, such a

method is not consistent [22]. In general, the determination of one representative characteris-

tic length of micro–structure is very complex in concrete since strain localization can include

a mixed mode (cracks and shear zones [10]), a characteristic length is one–dimensional but

is related to the fracture process zone with a certain area or volume [10] which increases

during deformation (e.g. on the basis of acoustic emission measurements by [123]). In turn,

other researchers conclude that the characteristic length is not a constant, and it depends on

the type of the boundary value problem and the current level of damage [62]. The only way

to determine a characteristic length are simultaneous measurements of load–displacement

curves and widths of the fracture process zones in experiments with the same concrete for

different boundary value problems and specimen sizes [22].

This chapter shows a capability of a non–invasive method called Digital Image Correla-

tion technique [18] (called also Particle Image Velocimetry (PIV)) to measure directly sur-

face displacements in model concrete beams subject to three–point bending. The technique

which was originally developed in the field of experimental fluid and gas mechanics [126]

has been nowadays frequently used in granular materials [76, 107, 112, 127, 143, 162] The

deformation quantities is, however, significantly larger than these in brittle materials.

The model tests were carried out with notched concrete specimens subject to three–point

bending. Three different beam sizes and two different concrete mixes were used. During ex-

periments, load–deflection curves and evolution of fracture process zone were determined.

The measured size effect results were compared with the size effect law by [6] and experi-

mental results by [98].

This chapter is organized as follows. In Sect. 3.2, the DIC technique is described in detail.

Section 3.3 discusses the accuracy of the method. The information about the experimental

setup is given in Sect. 3.4. The experimental results are depicted in Sect. 3.5. Finally, some

conclusions are given in Sect. 6.

To use DIC, the software written in C++ by the author of this thesis was applied.

3.2 Digital Image Correlation technique

DIC is a powerful optical surface velocity–measuring tool to visualize two dimensional de-

formations. The colored surface serves as tracers. A high resolution monitoring of different

deformations can be obtained by processing successive digital images taken with a constant

time between frames from a usual digital camera. Owing to that strain localization can be vi-

sualized and analysed in detail. Digital camera sensors are comprised of tiny, light–sensitive

elements called pixels.

When an image is captured, each pixel reflects three numbers (called the color com-

ponents YCbCr) in proportion to the amount of the light reflected from the imaged object,

where Y is the luminosity (brightness), Cb is the blueness and Cr is the redness. The DIC
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Figure 3.1: DIC analysis: two digital images with the marked square pixel subset (white square) and

other overlaping pixel subsets (hashed squares)

system interprets differences in light intensity as a gray–scale pattern recorded at each pixel

on CCD-camera (Charge Coupled Device). Three functions are of a major importance for

DIC: image field intensity, cross–correlation function and interpolation function. The image

intensity field assigns to each point in the image plane a scalar value which reflects the light

intensity (Y –color component) of the corresponding point in the physical space. The gray

levels range numerically between 0 (black) and 255 (white) for an 8-bit image. A so–called

area of interest (AOI) is cut out of the digital image and small overlapping sub–areas called

pixel subsets are chosen (Fig. 3.1). Each cell comprises a particular number of square sub-

sets of digital pixels from 15×15 pixels up to 240×240 pixels. If the deformation between

two images is sufficiently small, the patterns of the interrogation cells are supposed not to

change their characteristics (only their locations).

A deformation pattern is detected by comparing two consecutive images captured by a

camera which remains in a fixed position with its axis oriented perpendicular to the plane of

deformation. To find a local displacement between images 1 and 2, a search zone is extracted

from the second image. A correct local displacement vector for each interrogation cell is

accomplished by means of a cross–correlation function between two consecutive brightness

distributions (Y color component) in two digital images. The function calculates simply

possible displacements by correlating all gray values from the first image with all gray values

from the second image. The correlation plane is evaluated at single pixel intervals, this

means that the resolution is equal to one pixel. By fitting an interpolation function to the

region close to the peak, the displacement vector is established with a high accuracy (equal

to the correlation offset). The peak in the correlation function indicates that the two images

are overlaying each other (thus, it indicates the ,,degree of match” between two images).

The Charged Coupled Device operates in the color space YCbCr, as opposed to the widely

known color space Red Green Blue RGB (R is the red, G is the green and B is the blue color

component). The first step in the image preprocessing is to convert the RGB color space

into the YCbCr color space according to the ISO/TC42N 4378 TIFF/EP standard, assuming

R,G,B ∈ 〈0,255〉 and Y,Cb,Cr ∈ 〈0,255〉:

Y = 0.2989 ·R+0.5866 ·G+0.1145 ·B,
Cb = 128−0.168736 ·R−0.331264 ·G+0.5 ·B,
Cr = 128+0.5 ·R−0.418688 ·G−0.081312 ·B.

(3.1)

To calculate a strain field on the specimen surface, two succesive digital images have to
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be compared with each other. First, one pixel is selected on the first digital image, then a

square pixel subset of a certain size is chosen around it. Next a search for this pixel subset on

the second image is done by using a correlation function (Fig. 3.1). Two different correlation

functions were used: first using the Spearman rank correlation coefficient R1 [18] and the

Pearson’s product–moment correlation coefficient R2. The first method is faster but less

stable during calculations with large pixel subset sizes:

R1(x,y) =
(∑xiyi)

2

∑x2
i ∑y2

i

. (3.2)

The parameters x and y refer to the first and second image, respectively and i stands for

the number of the pixel. In turn, the Pearson’s product–moment correlation method produces

numerically more stable results although it needs more time (ca. 20% more) for calculations.

It is obtained by dividing the covariance of two variables by the product of their standard

deviations (n - number of pixels in the pixel subset):

R2(x,y) =
n∑xiyi −∑xi ∑yi

√

n∑x2
i − (∑xi)2

√

n∑y2
i − (∑yi)2

. (3.3)

Equation 3.3 was implemented using following algorithm (written in the pseudocode):

sum_sq_x = 0

sum_sq_y = 0

sum_coproduct = 0

mean_x = x[1]

mean_y = y[1]

for i from 2 to N:

sweep = (i - 1.0) / i

delta_x = x[i] - mean_x

delta_y = y[i] - mean_y

sum_sq_x += delta_x * delta_x * sweep

sum_sq_y += delta_y * delta_y * sweep

sum_coproduct += delta_x * delta_y * sweep

mean_x += delta_x / i

mean_y += delta_y / i

pop_sd_x = sqrt( sum_sq_x / N )

pop_sd_y = sqrt( sum_sq_y / N )

cov_x_y = sum_coproduct / N

correlation = cov_x_y / (pop_sd_x * pop_sd_y).

This algorithm1 proved to be approximately ten times faster than the calculations with

a straightforward implementation of the Pearson’s formula (Eq. 3.3). It does not include

numerical instabilities when a huge amount of correlation points is large, or their scalar

values are big. The 8 byte float precision type was used in calculations since it turned out

to be the fastest. Figure 3.2 shows a comparison between two different correlation functions

and pixel subset sizes. The Pearson’s method with the subset of 200 pixels had smallest

amount of noise but also a less steep peak. A too small subset produced noise. In turn,

the Spearman’s method generated too small correlation peak with respect to the correlation

plane.

1see http://en.wikipedia.org/wiki/Correlation
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Figure 3.2: Comparison between the correlation functions and pixel subset sizes: (a) pixel subset

of 10 pixels, Pearson’s formula (Eq. 3.3); (b) pixel subset of 50 pixels, Pearson’s formula (Eq. 3.3);

(c) pixel subset of 200 pixels, Pearson’s formula (Eq. 3.3); (d) pixel subset of 200 pixels, Spearman’s

formula (Eq. 3.2)

The top of the correlation peak is usually not clearly distingushed as the correlation

function generates results for each pixel of the image. To determine the top of the peak, a

sub–pixel interpolation has to be performed. Figure 3.3 a,b shows a correlation plane used

for interpolating the correlation peak for 2 different interpolation functions [50].

The first one was the spline36 interpolation (Fig. 3.4) which used the 6× 6 pixel image

area (Fig. 3.3 b) to calculate the interpolated value:

w1(a) =







(
(

13
11 a− 453

209

)
a− 3

209

)

a+1 for 0 < a < 1,
(
(
− 6

11(a−1)+ 270
209

)
(a−1)− 156

209

)

(a−1) for 1 < a < 2,
(
(

1
11(a−2)− 45

209

)
(a−2)+ 26

209

)

(a−2) for 2 < a < 3.

(3.4)

The second interpolation function was sinc256 (Figs. 3.3 a and 3.4) which used 16×16
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Figure 3.5: Effect of sub–pixel interpolation on the strain field in the concrete specimen: (a) with

sub–pixel interpolation; (b) without sub–pixel interpolation

pixel image area and was slower (by ca. 10%) than the first one:

w2(a) =

{
1 for a = 0,
sin(πa)

πa
· sin( πa

8 )
πa
8

for a > 0.
(3.5)

Generally, the interpolation was evaluated at the 1/500th pixel intervals, yielding a sys-

tem resolution of 0.002 pixels (Fig. 3.3 c,d). Figure 3.5 shows the difference between the ob-

tained results of strain fields with and without a sub–pixel interpolation. The results demon-

strate that the application of a sub–pixel interpolation increases the accuracy of calculations.

3.3 Precision of DIC measurements

A series of initial experiments was conducted to assess the precision of DIC. Figure 3.7

shows the standard deviation of the measured strain against the pixel subset size for two

different correlation and two interpolation functions. For this purpose, two successive dig-

ital images of the concrete specimen were compared wherein the resulting strain was zero.

Figure 3.7 e,f demonstrates that using Y component is crucial, because using a typical ,,gray

color” (the matching component calculated as (R+G+B)/3, or R alone) approach yields

worse results. The most accurate results were obtained with the Pearson’s method used in

combination with the interpolation function sinc256 and Y color component. Therefore, all

further calculations were performed using this method.
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Figures 3.8 and 3.9 show the results for following digial image pairs (as shown on

Fig. 3.6):

a) two subsequent images of the concrete speciemen,

b) random image with 3×3 ,,grains”,

c) single image of the concrete speciemen compared with itself,

d) random image with 1×1 ,,grains”.

For those four cases, Fig. 3.8 shows that the DIC precision is better than 0.0005 for the

pixel subsets greater than 60 pixels in all cases.

The precision errors are associated with the asymmetry of the correlation peak. In the

case of the random image with 1× 1 pixel ,,grains”, an almost perfect match was found

(Fig. 3.8 d) with the highest precision. For 3× 3 pixel ,,grains” and two subsequent images

(Fig. 3.8 a,b) no perfect match was found, since the correlation peak was asymmetric. The

strain value fluctuations along a single line of the image is shown on Fig. 3.10 for the point

’A’ of Fig. 3.8.

Next, the second image for all four cases (Fig. 3.6) was artificially modified by stretching

300 pixel stripes into 301 pixels, so strain oscillated between 0 and 0.0033 every 300 pixels.

Figure 3.9 reveals a higher precision for the real case (Fig. 3.6 a,c) than for the random pixel

pattern (Fig. 3.6 b,d). In the randomly generated pixel pattern the noise has high amplitude in

the frequency domain thus by stretching it (to achieve strain 0.0033), an image interference

occurs. The real images have small amplitude in the frequency domain thus no artefacts

are generated. Moreover, a large pixel subset size blurs the boundaries between oscillating

strain values while a smaller pixel subset size (but not too small) yields more accurate results.

Figure 3.11 and 3.12 clearly show this outcome for points ’B’ and ’C’ of Fig. 3.9.

The precision of DIC strongly depends on the pixel subset size and the quality of speckle

pattern in the image. It is recommended that the speckle pattern dots on the concrete surface

should include 4−10 pixels on the captured image. Thus, no image interference takes place.

The selection of an optimum pixel subset size in the DIC analysis requires two conflicting

parameters to be balanced. The larger pixel subsets offer an improved accuracy (Fig. 3.8) but

they blur the boundary between strain values (Fig. 3.12). The number of measurement points

depends only on the computational time since the distance between the pixel subset centers

can be as small as one pixel. In the calculations presented here, this distance was assumed

to lie between 10 and 40 pixels. So it was small enough to not influence the resolution of

results.

Figure 3.6: Images used in validation experiments: (a) two subsequent images; (b) random image

with 3×3 ,,grains”; (c) single image; (d) random image with 1×1 ,,grains”.
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3.4 Experimental setup

The model tests were performed with 12 notched concrete beams of different sizes under

three–point bending (with free ends). Figure 3.13 shows the geometry of 3 concrete beam

specimens with the thickness of 40 mm (the same geometry was assumed in laboratory ex-

periments by [98]). The beam depths D were 80 mm (small size beam), 160 mm (medium

size beam) and 320 mm (large size beam), respectively. A notch of depth D/10 mm and

thickness of 3 mm was placed in the middle of each beam bottom. The deformation in the

beams was induced by a vertical displacement prescribed at the mid–span with a rate of

0.01 mm/min. The entire experiment with a single beam lasted approximately 1 hour.

The specimens were made with two different mixes (Tab. 3.1) consisting of ordinary

Portland cement, water and sand (mean aggregate diameter d50 = 0.5 mm) or gravel (mean

aggregate diameter d50 = 2.0 mm). Figure 3.14 shows the grading curves for sand and gravel

used for both mixes. 9 beams were made of sand concrete and 3 of gravel concrete. The

uniaxial compression strength of beams measured on 10×10×10 cm3 specimens was fc =
64±3 MPa (sand concrete) and fc = 52±3 MPa (gravel concrete). In experiments, the usual

digital camera Nikon 8400 ED (8MP) was applied with the image resolution of 3264×2448

pixels (Fig. 3.15 a). The camera was mounted on a tripod with additional fixtures to ensure a

stable position. During experiments, load–deflection curves were registered and the fracture

zone width was measured with an induction displacement gauge placed above the notch

(Fig. 3.15 b). First, the concrete beams were polished to achieve a smooth surface. Then, a

speckle pattern was put on the surface using two color sprays: black and yellow. The images

were shot once per minute.

3.5 Experimental results

Figure 3.16 shows some beams after failure with a single crack propagated from the notch

up to the top. The typical load–deflection curves for sand and gravel concrete beams are

presented in Fig. 3.17. In turn, Fig. 3.19 shows the measured size effect for all experiments

with sand concrete beams compared with the size effect law by Bazant [6] and experimental

results by Le Bellégo [98]. In the case of gravel concrete beams, due to only 3 performed

tests, the measured size effect was not shown.

A pronounced size effect was observed in experiments (the larger the beam, the smaller

Figure 3.13: Geometry of concrete specimens subjected to three-point bending
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Table 3.1: Receipts for concrete used in experiments: (a) with sand; (b) with gravel

(a)

No. Material Volume

1. Sand 62%

2. Cement 27%

3. Water 11%

(b)

No. Material Volume

1. Gravel 76%

2. Cement 17%

3. Water 7%
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Figure 3.14: Grading curve for sand and gravel used for concrete

Figure 3.15: Instrumentation used in the experimental tests: (a) Nikon 8400 digital camera; (b) in-

duction displacement gauge
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Figure 3.16: Beams after failure: (a) small size beam (back side); (b) medium size beam (back side);

(c) large size beam (front side with the black-yellow speckle pattern inside of the image area marked

by white rectangle).

the strength). The material ductility increased with decreasing beam size. The results are

in satisfactory agreement with the size effect law [6] which is valid for structures with pre–

existing notches or large cracks:

σ =
B ft

√

1+ D
D0

, (3.6)

where σ – nominal strength, ft – tensile strength, B – dimensionless geometry–dependent

parameter which depends on the geometry of the structure and of the crack, D – specimen

size and D0 – size–dependent parameter called transitional size. To find the parameters B and

D0 from FE–analysis, a nonlinear least–squares (NLLS) Marquardt-Levenberg algorithm

was used. In spite of a small amount of sand concrete specimens (9), a satisfactory agreement

with the Bazant’s size effect law was obtained (Fig. 3.19 a). The measured data match also

the experimental results by Le Bellégo [98] (Fig. 3.19 b).
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Figure 3.23: Evolution of strain field during experiments from DIC above notch (sand concrete):

(a) small size beam (pixel subset 200); (b) medium size beam (pixel subset 210); (c) large size beam

(pixel subset 210); (A) before the peak; (B) at peak; (C) after the peak
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Figure 3.24: Evolution of strain field during experiments from DIC above notch (gravel concrete):

(a) small size beam (pixel subset 190); (b) medium size beam (pixel subset 170); (c) large size beam

(pixel subset 170); (A) before the beak; (B) at peak; (C) after the peak
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The displacement results from the induction displacement gauge were used to verify the

width of the fracture process zone obtained from DIC (Fig. 3.20). One assumed that the

measured displacement was equal to the integral of strain over the width of the fracture

process zone:

∆L =
∫

ε dl ≈ ∑εd, (3.7)

where d is a distance between pixel subsets expressed in millimeters in the DIC method.

Before the beam failure, a perfect fit occured between two curves, after the failure a small

discrepancy took place.

Figures 3.23 and 3.24 demonstrate the evolution of the horizontal strain in concrete

beams from DIC. The fracture process zone occurs before the peak on the load–deflection di-

agram. The zone can be almost straight or it can curved. In some cases, a pattern of localized

zones was created at the beginning of loading (Fig. 3.23 b). The width of the fracture process

zone was about 6±1 mm (12d50, 1.5da) for sand concrete with d50 = 0.5 mm and da = 4 mm,

and 7±1 mm (3.5d50, 0.5da) for gravel concrete with d50 = 2.0 mm and da = 16 mm, before

the failure. In general, the zone width evolved during the beam loading (Figs. 3.21 and 3.22)

(it mainly increased) which was in agreement with other experiments [123].



Chapter 4

Description of the Lattice Geometrical

Model

The lattice model developed by the author of this thesis follows the 60 year old idea of

discretizing the continuum by line elements [74, 75, 153], uses the already known method

for aggregate generation [160] and overlaying it on the lattice [60,154] (which are nearly 30

years old; Sect. 2.2 and Sect. 4.5.1), but uses a novel approach in performing the computation

of lattice elements. The algorithm is of explicit type which allows to easily distribute the

calculation onto multiple computers and multiple processors, thus reducing the computation

time. Also the formulas are kept simple. This model, if combined with other models by a

multi–scale approach, such as FEM or non–local FEM [19] (Figs. 2.12 and 2.20) should give

a reliable option for doing lattice–based simulations with discretization scale ≈ 1 mm used

in the regions of interest.

To use Lattice Geometrical Model, the software written in C++ by the author of this

thesis was applied (Appendix B).

4.1 Notation used

The simulated system consists of numerous elements such as

v
a
ri

a
b
le

beam
index

spring
index

node
index

variable
subname

Figure 4.1: Meaning of

subscripts and superscripts

a node, a beam or a flexural–torsional spring. Each of them con-

tains numerous properties listed in Tables 4.2–4.4. Each property

is referred to using the index number of the element, where the in-

dex placement tells which type of the element is being related to.

Figure 4.1 shows the assumed placement for those indices. Each

beam connects two nodes, and each spring connects two beams.

To simplify the indexing method, they have indices of elements

they connect (A, B for a beam and C, D for spring). Thus for

example the symbol C
~X used in the context of flexural–torsional spring refers to a beam

with index C (first beam of the two beams that the spring connects), and from that beam, its

position ~X is addressed.

All variables marked with math ring symbol above them are quaternions (eg. iq̊ is the ori-

entation of a beam with index i), all variables with an arrow above are three–dimensional vec-

tors (eg. i~X is a position of a node with index i) and all other variables are scalars. Quaterions

are a very convenient tool for working with rotation due to their interesting features, such as

43



44 CHAPTER 4. DESCRIPTION OF THE LATTICE GEOMETRICAL MODEL

the fact that sequences of rotations can be represented by multiplication of two quaternions,

or that they do not posses singularity points in the spherical space of all possible rotations.

The quaterion algebra is used extensively in the algorithm when dealing with rotations. The

necessary information about quaternions is included in Appendix C.

4.2 Introduction

In contrast to the lattice method by van Mier and Schlangen [136,153] (described in Sect. 2.2),

the beams are treated as geometric lines (thus, they do not posses any cross–section area) and

the calculation is done by examining successive geometric changes of elements, like change

of angle between the two beams, or the change of length of a beam. Thus, the model is

of kinematic type, the global stiffness matrix is not built and the calculation method has a

purely explicit character.

The full 3D version of the model has five types of geometric changes considered: trans-

lation i∆~W , rotation i∆~R, normal deformation i∆~D, bending deformation i∆~B and torsional

deformation i∆~T .

The displacement of each node due to translation i∆~W and rotation i∆~R is calculated by

means of performing a simple mathematical average of type m1+m2+...+mn

n
as shown below:

j∆~N = ∑
i

i∆~W + i∆~R
jnsum

, (4.1)

where the summation over index i refers to all beams connected to node j, symbol jnsum is the

number of beams connected with the node j and j∆~N is the resulting node’s displacement.

The translation i∆~W and rotation i∆~R are actually used for the conservation of movement.

A beam, which is not connected to any other beams (A,Bnsum = 1) that moved by i∆~W (or

rotated by i∆~R) in one calculation step will move (or rotate) the same amount of i∆~W in the

next step. Therefore i∆~W and i∆~R do not need any kind of parameters to control the model

behavior1.

In turn, the displacement of each node due to the beam deformation is controlled by

model stiffness parameters listed in Tab. 4.1, by means of performing a simple mathematical

weighted average of type m1a1+m2a2+...+mnan

a1+a2+...+an
using weights for longitudinal deformation ikl ,

bending deformation ikb and torsional deformation ikt as shown below:

j∆~K =

∑
i

(

i∆~Dikl + i∆~Bikb + i∆~T ikt

)

∑
i

(ikl + ikb + ikt)
, (4.2)

where the summation index i refers to all beams connected to node j and the j∆~K is the

resulting node’s displacement due to deformation. To simplify the Eq. 4.2, a sum of all

weighted average components jksum of all beams connected with the node j is introduced as:

jksum = ∑
i

(ikl + ikb + ikt) . (4.3)

1the model operates using calculation steps, without time in seconds, therefore the velocity is an artificial

(dummy) parameter



4.2. INTRODUCTION 45

i∆~W

i∆~W

i∆~R

−i∆~R
k∆~N = ∑

i

i∆~W−i∆~R
knsum

j∆~N = ∑
i

i∆~W+i∆~R
jnsum

−i∆~D

i∆~D

i∆~B

−i∆~B

j∆~K = ∑
i

−i∆~Dikl+i∆~Bikb
jksum

B
B
B

B
BM

k∆~K = ∑
i

i∆~Dikl−i∆~Bikb
kksum

j∆~X = j∆~N + j∆~K

k∆~X = k∆~N + k∆~K







+

+

→

→

Figure 4.2: General scheme to calculate displacements of elements in the lattice, summation over

index i refers to all beams connected with node j for which displacement j∆~X is calculated, similarly

with node k

The parameters ikl , ikb and ikt govern the deformation response of the material, therefore

they are stiffness parameters, but since they are used only to perform a simple mathematical

weighted average, they are dimensionless. Consequently the longitudinal stiffness parameter

ikl , controls the changes of the beam length, the bending stiffness parameter ikb, controls the

changes of the angle between beams, and the torsional stiffness parameter ikt , controls the

torsion between beams.

Next, the total node displacement j∆~X is calculated by adding its two components:

j∆~X = j∆~N + j∆~K, (4.4)

and the new node’s position is calculated using:

j~X = j~X + j∆~X . (4.5)

This procedure has been gathered together in Fig. 4.2, on which the green color represents

the target placement and length of the beam (into which a beam would move, if it was

not constrained by connections with other beams), the black color represents the current

position of the beam, the blue color represents the current position of neighboring beams,

and the red color represents the original position (angle) of the beam with respect to its

all neighboring beams on both ends. The formulas in Fig. 4.2 were written for both ends

of a beam for all types of geometric changes, with the exception of torsional deformation

i
~T , which is discussed in the next section. Attention to the sign must be paid, because for

example the translation i∆~W has the same sign for both ends of a beam, but the rotation

i∆~R has opposite signs. The components i∆~W and i∆~R repeat the movement that occurred

in previous calculation step, thus their computation is straightforward (described in the next
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Table 4.1: Main parameters used to describe the Lattice Geometrical Model

Stiffness parameters

kl longitudinal stiffness [-]

kb bending stiffness [-]

kt torsional stiffness [-]

Fracture parameter

εmin critical tensile strain [-]

section). The component i∆~D is obtained by multiplying the beam’s normal vector i~n by the

beam’s difference of length:

i∆~D = i~n(id − idinit) , (4.6)

where id and idinit are respectively beam’s current and initial length. The component i∆~B
is calculated by first calculating the angle (red lines on Fig. 4.2) at which the beam would

restore its initial angle to its neighboring beams (on both ends), and then calculating an

average of those two angles (green line on Fig. 4.2). In two dimensions, without using

quaternions this can be written as:

i∆φ = ∑
k

αk −αk
init

ibsum

, (4.7)

i∆~B = idi~n

[
cos(i∆φ) −sin(i∆φ)
sin(i∆φ) cos(i∆φ)

]

− idi~n , (4.8)

where ibsum is the amount of beams connected with beam i, the summation over index k refers

to angles between this beam and all the beams it connects with (it is described with detail in

the next section, the actual term used to describe an angle connecting a pair of beams is a

flexural–torsional spring), αk and αk
init are the current and initial angles between this beam

and each other beam. Thus the beam’s directional vector idi~n is rotated (Eq. 4.8) by the

average angle i∆φ (Eq. 4.7) and subtracted from its original position, which results in the

displacement i∆~B of the beam’s end. However the actual algorithm performs this operation

in three–dimensions using quaternions for that purpose:

i∆~B = i∆B̊ (idi~n)
(

i∆B̊
)−1 − idi~n , (4.9)

where the method for obtaining quaternion i∆B̊ is explained in the next section. The opera-

tion of quaternion rotation is explained in Appendix C.

To summarize, the Lattice Geometrical Model developed by the author of this thesis,

can be written using a single formula for the displacement of node j, which is calculated by

averaging the displacements of the end of beams belonging to this node caused by translation,

rotation, longitudinal deformation, bending deformation and torsional deformation:

j∆~X = ∑
i

i∆~W + i∆~R
jnsum

+∑
i

i∆~D ikl + i∆~B ikb + i∆~T ikt

jksum
, (4.10)

wherein the index i refers to all beams connected with node j. The node displacements are

calculated successively during each calculation step. Next, a new position of the center of
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the beam with index i is calculated as the average of positions of two end nodes belonging to

this beam:

i
~X =

A~X + B~X

2
, (4.11)

next, a fracture criterion is checked, and each beam that exceeds the local critical tensile

strain εmin (see Tab. 4.1) is removed:

id − idinit

idinit
> iεmin , (4.12)

which closes the calculation loop. The Equations 4.10–4.12 are repeated infinitely until the

calculation process is terminated.

4.3 Algorithm for the Lattice Geometrical Model in 3D

This section describes the algorithm for Lattice Geometrical Model in two stages, with the

help of block diagrams. First in Sect. 4.3.1 and 4.3.2 a simplified 3D algorithm without

bending and torsion is explained. The lattice mesh behaves as if it was made of rods which

are not subject to rotation at joints. In Sect. 4.3.3 and 4.3.4, the algorithm is extended to

support bending and torsion between beams (lattice lines), by introducing a new concept of

flexural–torsional spring, which makes the model complete.

4.3.1 Beam and node elements used in the simplified algorithm

Figure 4.3 shows a single line element of the lattice that connects nodes A and B. This

element is called a beam. However it must be clear that this beam does not behave like

Bernoulli beams (Fig. 2.7 in Sect. 2.2). It is always a straight geometric line segment that

connects two nodes. The actual bending capability of the Lattice Geometrical Model is

achieved by means of preserving original angle between two beams. The beam is described

by two unit vectors: a normal direction vector i~n (between points A and B), and a direction

Table 4.2: The variables stored in each node element

Variable Description Assigned Used

Node

i~X node position {x,y,z} k0 k9c
∗ k6b k6a

i∆~X overall node displacement {∆x,∆y,∆z} k9b k9c

i∆~N displacement due to conservation of movement k1 k8 k9b

i∆~K displacement due to element deformation k1 k8a k8b k8a k8b k9b

insum number of beams connected with this node,

used for averaging the movement

k1 k8 k9a k9b

iksum sum of stiffnesses of all beams connected with

this node, used for wieghted average of the de-

formation: iksum = ∑
j

jkl + jkb + jkt

k1 k8a k8b k8a k8b k9b

∗ kN denotes the calculation step shown in Figs. 4.4–4.19
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i~n

i~t

i
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Figure 4.3: Vectors that describe a beam

Table 4.3: The variables stored in each beam element

Variable Description Assigned Used

Beam

iA, iB indexes of nodes that this beam connects k0 ∗ k4 k6 k8
ibsum number of springs connected with this beam k1a k2 k2 k4 k5
idinit initial beam length k0 k8a k7
id current beam length k0 k6b k6 k7 k8a k8b

i~n a unit vector of direction of the beam, from

node iA to node iB

k0 k6b k3a k3b k5 k6ck6d k6e k8a k8b

i~t the second direction of a beam used to track its

rotation

k0 k6c k6c k6d k5
i
~X , i

~Xprev position the center of the beam {x,y,z} k0 k6a k6a

i∆~W displacement of a beam due to conservation of

movement

k6a k8
i∆~R displacement of beam’s end due to conserva-

tion of rotation

k6e k8
i∆~D vector representing longitudinal deformation k8a k8a

i∆~B vector representing bending deformation k8b k8b

i∆~T vector representing torsional deformation k8b k8b

iq̊, iq̊prev orientation of the beam q̊ = a+bi+ c j +dk k0 k6d k6d

i∆q̊ orientation increment of the beam k0 k6d k6e

iω torsional rotation of a beam k1a k5 k5 k6c

i∆B̊ rotation increment nedeed to restore original

bending angle to all its neighboring beams

k1a k4 k4 k8b

i∆T̊ rotation increment nedeed to restore original

torsion angle to all its neighboring beams

k1a k5 k5 k8b

iεmin critical tensile strain k0 k7
ikl longitudinal stiffness parameter k0 k8
ikb bending stiffness parameter k0 k8b

ikt torsional stiffness parameter k0 k8b

∗ kN denotes the calculation step shown in Figs. 4.4–4.19



4.3. ALGORITHM FOR THE LATTICE GEOMETRICAL MODEL IN 3D 49

vector i~t (always orthogonal to i~n). The second direction vector is used to track the rotation

of the beam around its axis i~n. The center of the beam is i
~X . Other properties of the beam

are listed with explanations in Tab. 4.3.

The beam connects two node elements with respective coordinates A
~X and B

~X . The vari-

ables stored in each node along with their description are listed in Tab. 4.2. Those variables

are used in the algorithm to perform the summation as expressed by Eq. 4.4 or Eq. 4.10.

4.3.2 Simplified 3D algorithm without bending and torsion

The overall block diagram for a simplified algorithm is depicted on Fig. 4.4. It is divided into

11 steps which are referred respectively as k0 – k10 . The step k0 is loading the initial config-

uration of the sample and performs preprocessing. After this step is finished, all the nodes

and beams are created, and contain values that describe the sample. The mesh generation is

an important part of preprocessing and is described in Sect. 4.5.1.

Next step k1 is shown in Fig. 4.6. The temporary values in nodes are set to zero. This

section skips handling of bending and torsion, therefore the next step is k6 , which is shown

in Fig. 4.5. It is a loop in which all the beams are successively calculated one after another.

The loop starts by calculating the values of i
~W and i

~R (see Fig. 4.2) marked by bold boxes.

The beam translation is calculated by subtracting old beam’s position i
~Xprev from the current

value i
~X :

i∆~W = i
~X − i

~Xprev, (4.13)

next, in step k6b a normal vector i~n of the beam and its length id are updated. Since the i~n
was updated, the beam’s second direction must be updated too, to keep it orthogonal. This is

done in step k6c by doing orthonormalization. After this operation the dot product of i~n and

i~t will be zero, which means that the vectors are orthogonal. Afterwards i~t is renormalized

so it is again a unit vector. Step k6d calculates the orientation increment of the beam. It is

a product of the current orientation of the beam (which is built from matrix
[

i~n, i~t, i~n× i~t
]
,

using an efficient method mentioned in Sect. C.5.2) and an inverse of previous orientation

iq̊prev. Finally in step k6e the current beam’s rotation i
~R is obtained:

i∆~R = i∆q̊ i
~h (i∆q̊)−1 − i

~h, (4.14)

where i
~h is a temporary half–length vector pointing from beam’s center to beam’s end.

Next step k7 – k8 checks the fracture criterion of a beam, and removes it if necessary as

explained on Fig. 4.7.

Then in steps k8 – k9 in Fig. 4.8, each beam adds its contribution to the translation A,B∆~N

and deformation A,B∆~K displacement vectors, by adding a respective value to the nodes A

and B that this beam connects.

Finally in the last step k9 – k10 in Fig. 4.9, a new position for each node is calculated

(Eq. 4.10). The variables i∆~N and i∆~K actually contain only the numerator from Eq. 4.1 and

Eq. 4.2 and the division is finally done in step k9b . The boundary conditions are applied by

controlling the position of constrained nodes as explained in the block diagram.

Then some results are saved (like average position of a group of nodes, or strain of a

group of beams), and the loop k1 – k10 repeats until terminated.
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Figure 4.4: Simplified block diagram in calculation algorithm of Lattice Geometrical Model without

bending and torsion (the beam elements behave as rods)
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Figure 4.5: Simulation steps k6 – k7 (simplified algorithm): Calculate current geometry of the beam

and update beam’s translation and rotation
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Figure 4.7: Simulation steps k7 – k8 : Check fracture criterion in the current beam, remove the beam

if necessary



4.3. ALGORITHM FOR THE LATTICE GEOMETRICAL MODEL IN 3D 53

6

6

6

-

Next beam:

i = i+1

k6a

k6f

k8d

No

?

k8
Calculate increments of A,Bnsum nodes A and B (Eq. 4.1)

Ansum = Ansum +1
Bnsum = Bnsum +1

?
Calculate displacement due to beam’s movement

A∆~N = A∆~N + i∆~W + i∆~R
B∆~N = B∆~N + i∆~W − i∆~R

?
k8a

Calculate increments of A,Bksum in nodes A and B (Eq. 4.3)

Aksum = Aksum + ikl
Bksum = Bksum + ikl

?
Calculate vector of beam elongation – node displacement

due to change of beam’s length

i∆~D = i~n(id − idinit)

?
Increment nodes displacement due to fact that beam returns to its

original length (using beam’s longitudinal stiffness parameter ikl

as a weight for the computation of weighted average)

A∆~K = A∆~K − i∆~D ikl ,
B∆~K = B∆~K + i∆~D ikl

?
k8b

?
k8c

�������
XXXXXXX

XXXXXXX
������� All beams processed?

Yesk9?
Figure 4.8: Simulation steps k8 – k9 (simplified algorithm): Increment displacement of nodes A and

B connected to current beam



54 CHAPTER 4. DESCRIPTION OF THE LATTICE GEOMETRICAL MODEL

No

6

Next node:

i = i+1

-

?

�
�
�
�First node:

i = 0

-

?

k9

k9a

����������

XXXXXXXXXX

XXXXXXXXXX

����������
Node

has no beams connected
insum = 0 ?

No

Yes

?
k9b

?
Delete this

node
Calculate the node displacement

i∆~X =
i∆~N

insum
+

i∆~K
iksum

?
k9c

����������

XXXXXXXXXX

XXXXXXXXXX

����������
Node

constrained by boundary

conditions?
YesNo

XXXXXXz
������9

Calculate new

position of the node

i~X = i~X + i∆~X
XXXXXXXXXXz

Update node position i~X according to

boundary conditions, using i∆~X if some

directions are not constrained (smooth edges)
����������9

?
k9d

�������
XXXXXXX

XXXXXXX
������� All nodes processed?

Yesk10
?

Figure 4.9: Simulation steps k9 – k10 : Update node positions and apply boundary conditions
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4.3.3 Flexural–torsional spring element used in full algorithm

Figure 4.10 shows a single flexural–torsional spring that spans between a pair of beams. The

purpose if this element is to keep the original angles between the two beams. Just like a

beam element serves the purpose of keeping the original distance between a pair of nodes.

The flexural–torsional spring is described by a unit vector ~pi which is a normal to the

plane created by two beams, and stores three angles: the initial angle α i
init between two

beams (Fig. 4.10 a), and two angles β i
1,2,init between the initial second direction vector of

each beam C~t and D~t, and the unit vector ~pi (Fig. 4.10 b). Also the element stores a sign si of

the angle between two beams, it is necessary, because the arccos(•) of a vector dot product

returns only a value in range 〈0,π〉. By using this sign, the full range 〈−π,π〉 is obtained.

Similarly the sign f i representing the order of nodes in connected beams is stored, it is used

to correctly calculate the torsion angle ω i (Fig. 4.10 d) between two beams. Figure 4.11

shows possible scenarios for the sign f i. Also, the connected beams undergo a twist ϑ i
1,2

(Fig. 4.10 c) which is calculated from the difference between the initial and current values of

angles β i
1,2 projected on the axis C,D~n of the corresponding beam.

The calculation of the unit vector ~pi raises the need of dealing with the numerical pre-

cision of the computer. This happens due to the fact that the cross product C~n× D~n can

sometimes be very close to zero, or equal to zero, when the connected beams are parallel.

The vector ~pi must be normalized, and dividing it by a value very close to numerical zero

results in error, and instability of the model. A constant value ξ depicting the numerical

precision of the computer was used. All properties of the flexural–torsional spring element

are listed in Tab. 4.4 with their explanations.
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Figure 4.10: Vectors and angles that describe beams and a spring
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Table 4.4: The variables stored in each flexural–torsional spring element

Variable Description Assigned Used

Flexural–torsional spring

Ci, Di indexes of beams that this spring connects k0 ∗ k4 k5
~pi, ~pi

prev normal of the plane formed by the two beams

that this spring connects

k3a k3b k3c k4 k5
si, si

prev sign of the planar angle between two beams,

either 1 or −1

k0 k3b k3b k4
f i sign representing the order of nodes in which

beams are connected, 1 or −1 (see Fig. 4.11)

k5 k5
α i

init initial angle between two beams k0 k4
α i current angle between two beams k3b k4
∆α i delta between current and initial angle, used to

calculate bending deformation

k4 k4
β i

1,2,init initial angle between C,D~t and vector ~pi k0 k5
β i

1,2 current angle between C,D~t and vector ~pi k5 k5
∆β i

1,2 delta between current and initial angles k5 k5
B̊i temporary quaternion representing bending k4
T̊ i temporary quaternion representing torsion k5
ω i

1,2 torsional angle between two beams k5 k5
ϑ i

1,2 twist angle between two beams k5 k5
ξ numerical precision defined as smallest number

that changes a numerical value: 1 + ξ 6= 1. In

the case of C++ double type on 32bit machine

ξ = 1 ·10−15

constant k3c

∗ kN denotes the calculation step shown in Figs. 4.4–4.19

C C

C

D

D D

D C

C D

C D

f i = 1

f i = −1

f i = −1

Figure 4.11: Possible scenarios of order of nodes between the connected beams which influence the f i

parameter



4.3. ALGORITHM FOR THE LATTICE GEOMETRICAL MODEL IN 3D 57

4.3.4 Full 3D algorithm

The overall block diagram for full algorithm is presented in Fig. 4.12. The simplified version

was extended by adding the steps k1a – k2 – k3 – k4 – k5 – k6 , and k8b – k8c and modifying the stepsk6c – k6d in the existing algorithm.

The extension of a simple algorithm with rods to a full version is done by analogy. The

nodes store the displacement vectors due to conservation of movement i~K and deformation
i~N, the beams store displacement quaternions (rotation increment) due to bending i∆B̊ and

torsion i∆T̊ . Following the same analogy, beams store the number of springs connected with

the beam ibsum. The calculation step k1a – k2 in Fig. 4.13 is analogous to the steps k1 – k2 .

The temporary variables are being reset. Next, in the steps k2 – k3 in Fig. 4.14, the amount

of springs connected with each beam is counted.

The steps k3 – k4 in Figure 4.17 calculate the current geometry of the spring. The normal

of the plane between two beams ~pi (step k3a ) is used to track the changes of the sign si

between 1 and −1. If a dot product of ~pi ·~pi
prev is below zero, it means that ~pi ,,flipped” to

the other side of the plane, and that the angle α i between two beams had changed from π to

−π (step k3b ). After that the ~pi is normalized if the numerical precision is high enough (stepk3c , Sect. 4.3.3).

In the steps k4 – k5 in Fig. 4.18, small quaternion rotations are combined together to

calculate the overall beam rotation i∆B̊. It is not possible to divide a combined rotation

afterwards because the angle of rotation must be divided before combining it with previous

rotations, which is done using a product of quaternions:

j∆B̊ = ∏
i

B̊i

(

~pi,
−si ∆α i

jbsum

)

, (4.15)

wherein the index i refers to all springs connected with beam j, a temporary quaternion B̊i is

built from axis ~pi and angle ∆α i of each spring. The sign si makes sure that ∆α i ∈ 〈−π,π〉,
and jbsum divides the angle by number of springs. This operation is fully analogous a perfor-

mance of a mathematical average as in Eq. 4.1, except that it operates on rotations (quater-

nions), not on displacements (vectors).

The steps k5 – k6 in Fig. 4.18 calculate the quaternion rotation of a beam due to torsion

between beams i∆T̊ . First, the sign f i is determined according to Fig. 4.11, then current

values of angles β i
1,2 between C,D~t and unit normal of the plane ~pi are calculated (Fig. 4.10).

Later, the difference between the initial and the current angle ∆β i
1,2 is used to calculate the

torsional angle between beams ω i
1,2 and angle of twist ϑ i

1,2.

The meaning of the torsion angle ω i
1,2 (Fig. 4.10) is that if a beam C is rotated around the

axis of the beam D by ω i
1 it will restore its initial angle β i

1,init between C~t and ~pi. Conversely

the twist angle has the meaning that if a beam C rotates around its own axis by ϑ i
1 it will also

restore its initial angle β i
1,init . Thus, the torsion and twist angle describe two possible ways

in which a beam can restore the initial angle to the plane formed by two beams.

The angle α i plays an important role in calculating the angle of twist. If two beams nearly

overlap (α i is close to zero) or are almost parallel (|α i| is close to π), the twist cannot be

induced between the beams — the beam will rotate instead (using ω i
1), without twisting. In

turn, if the beams are roughly orthogonal to each other (|α i| is close to π
2

), the induced twist

is strong (Fig. 4.10). It is easier to twist a bar if the rotations on both ends are applied in the
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Figure 4.12: Block diagram of full calculation algorithm in Lattice Geometrical Model
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Figure 4.13: Simulation steps k1a – k2 (full algo-

rithm with bending and torsion): Set temporary

variables to zero
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Figure 4.14: Simulation steps k2 – k3 (full algo-

rithm): Calculate number of springs connected

with each beam
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∣
∣
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Figure 4.15: Simulation steps k6c – k6d (full algorithm): Calculate the orientation of the beam, taking

its torsion into account
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plane orthogonal to the axis of the object. It turns out that the angle of twist is projected on

the axis of beam, using
∣
∣sin(α i)

∣
∣. However in this model a function sin2(α i) has to be used,

because the sharp peak (discontinuity) at α i = 0 leads to the instable behavior of the model

(Fig. 4.16). Incidentally sin2(α i) equals |~pi|2 before normalization, which allows to optimize

the calculation. Also an integer counter ci
1,2 is used for each beam which allows to store twist

angles bigger than π (or smaller than −π), therefore ϑ i
1,2 is incremented by 2π ci

1,2. This was

not included in the block diagram, because it would unnecessarily complicate it.

Finally, the torsion angle jω for each beam can be calculated (the angle which the beam

should rotate around its own axis):

jω = ∑
i

thisϑ
i + thisω

i

2 jbsum

, (4.16)

where index i refers to all springs connected with beam j and thisϑ
i, thisω

i are respective

angles calculated in spring i which refer to this beam j. This summation divided by 2 jbsum

is also a mathematical average, just like everything else in this model. The factor 2 used in

the denominator may be caused by the
∣
∣sin(α i)

∣
∣↔ sin2(α i) approximation (Fig. 4.16), and

without it, the calculation would become unstable.

The torsional rotation j∆T̊ at the end of step k5 represents the rotation of the beam

j around its neighboring beams, due to the torsion angle ω i (Fig. 4.10). It is calculated

by performing another quaternion product, also averaged over the amount jbsum of beams

involved:

j∆T̊ = ∏
i

T̊ i

(

other~n,
− f i

thisϑ
i − otherω i

jbsum

)

, (4.17)

where index i refers to all springs connected with beam j, the quaternion T̊ i is build from the

axis of rotation other~n of the other beam, and angle of rotation being a difference between

twist and torsion.

The steps k6c – k6d shown on Fig. 4.15 are a modification to the previous simplified algo-

rithm. The beam’s second direction i~t is rotated by the angle of torsion iω around the beam’s

normal axis i~n. This effectively performs the rotation calculated in Eq. 4.16.

The addition of the steps k8b – k8c (Fig. 4.19) makes the Eq. 4.10 now covered fully, by

handling bending deformations i∆~B and torsional deformations i∆~T . The operations in the

block diagram are analogous to those in Fig. 4.8.

0.0

0.5

1.0

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

|sin(αi)| sin2(αi)

α i

Figure 4.16: Plot showing the two possible functions for projecting twist angle ϑ i: function |sin(α i)|
is geometrically correct, but due to discontinuity has instable behavior at angle α i = 0; in turn function

sin2(α i) is continuous and results in a stable calculations.
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Figure 4.17: Simulation steps k3 – k4 (full algorithm): Calculate current geometry of the flexural–

torsional spring
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Figure 4.18: Simulation steps k4 – k5 – k6 (full algorithm): Increment bending and torsional rotation

in beams A and B connected to current flexural–torsional spring

∗ the function ,,sign
(
~pi ×D~n ·C~t

)
” is a simple method of ensuring a correct sign from the function ,,arccos(•)”,

thus the angle in the range 〈−π ,π〉 is correctly assigned. This method however produces wrong results in the

limit cases when the angle is very close to zero or π . The effect is not noticeable, because in such cases

the sign is not important. The author used a little different method to check the sign, to be sure that it

was always correct. This method involves several if...then...else statements checking ∆β i
1,2prev

, and

eventually building a quaternion. Thus writing a block diagram for this operation would unnecessarily fill

half of the page. The exact code can be found in YADE source, in file LatticeLaw.cpp:184 on the webpage

http://yade.berlios.de
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Figure 4.19: Simulation steps k8b – k8c (full algorithm): Increment displacement of nodes A and B

connected to current beam due to change of angle and torsion between beams
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4.4 Example calculation

The calculation method of the re-

Figure 4.20: A simplified frame composed of 4 beams

sultant node displacement (Eq. 4.10) is

shown below on the example of a sim-

ple frame composed of 4 beams dur-

ing one prescribed displacement incre-

ment (Fig. 4.20). The nodes 3 and 5

are fixed and the node 1 is assumed to

displace to the point with the new co-

ordinates (0.58, 1.42). The displace-

ment vectors of the node 2 in beams

1, 2 and 3 are: 2
1
~W = (0.09,−0.04),

2
2
~W = (0,0), 2

3
~W = (0,0),

2
1
~R = (−0.065,−0.012), 2

2
~R = (0,0),

2
3
~R = (0,0), 2

1
~D = (0.035,−0.131),

2
2
~D = (0,0), 2

3
~D = (0,0), 2

1
~B = (0.124,0.044), 2

2
~B = (0.44,−0.064) and 2

3
~B = (−0.006,0.041),

respectively (with the rotation angle of the node 2: 2
1∆ϕ = −8.9◦ (beam 1), 2

1∆ϕ = 4.45◦

(beam 2), and 2
1∆ϕ = −2.97◦ (beam 3)). For the stiffness parameters kb = 0.6 and kl = 1.0,

the resultant displacement vector of the node 2 is equal to (Eq. 4.10):

∆~X2 = 1
3

(
2
1
~W +2

2
~W +2

3
~W +2

1
~R+2

2
~R+2

3
~R
)

+

+

(
2
1kl

2
1
~D+2

2 kl
2
2
~D+2

3 kl
2
3
~D+2

1 kb
2
1
~B+2

2 kb
2
2
~B+2

3 kb
2
3
~B

2
1kl +

2
2 kl +

2
3 kl +

2
1 kb +2

2 kb +2
3 kb

)

=

= 1
3 ((0.09,−0.04)+(0,0)+(0,0)+(−0.065,−0.012)+(0,0)+(0,0))+

+
((0.035,−0.131)+(0.0)+(0,0))·1.0+((0.124,0.044)+(0.044,−0.064)+(0.006,0.041))·0.6

(1.0+1.0+1.0+0.6+0.6+0.6) =

= (0.037,−0.042),

(4.18)

and the new coordinates of node 2 are (0.837, 0.558). In turn, the displacement vectors of

node 4 in beams 3 and 4 are: 4
3
~W = (0,0), 4

4
~W = (0,0), 4

3
~R = (0,0), 4

4
~R = (0,0), 4

3
~D = (0,0),

4
4
~D = (0,0), 4

3
~B = (−0.006,−0.041) and 4

4
~B = (0,0), respectively (with the rotation angle of

node 4: 4
3∆ϕ = −2.97◦ (beam 3) and 4

4∆ϕ = 2.97◦ (beam 4)). The resultant displacement

vector of the node 4 is equal to (Eq. 4.10):

∆~X4 =
1

2

(
4
3
~W + 4

4
~W + 4

3
~R+ 4

4
~R
)

+

(
4
3kl

4
3
~D+4

4 kl
4
4
~D+4

3 kb
4
3
~B+4

4 kb
4
4
~B

4
3kl +

4
4 kl +

4
3 kb +4

4 kb

)

=

= 1
2 ((0,0)+(0,0)+(0,0)+(0,0))+

+
(

(0,0)·1.0+((−0.006,−0.041)+(0,0))·0.6
(1.0+1.0+0.6+0.6)

)

= (−0.001,−0.007),

(4.19)

and the new coordinates of node 4 are (1.599, 0.493).
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4.5 Model discretization

The studies of Jirasek and Bazant [81] and Schlangen [134] showed the importance of the

randomness of the lattice. A regular lattice of any kind can introduce severe bias for the

crack propagation direction.

Two different generation methods were employed by the author. First a method described

in the following section was used, later a conventional Delaunay triangulation was used.

The results obtained with both methods are similar. However the Delaunay triangulation

contributes to shorter computation time.

4.5.1 Mesh generation

Table 4.5 lists all parameters used for the mesh generation, and Fig. 4.21 shows the genera-

tion method. It is similar to method in Sect. 2.2 [99,136], with the exception that a triangular

grid is used, and not an orthogonal one. First, a triangular grid is created in the material with

the side dimensions equal to g (Fig. 4.21). In each triangle of the grid, additional interior

squares are assumed with an area of s× s. Next, one point was selected at random within

these interior squares. Later, all points inside of squares were connected with neighboring

ones within a distance of rmax to create a non–uniform mesh of beams, where the maximum

beam length was rmax (e.g. rmax = 2g), the minimum beam length was determined by the

random placement of points (e.g. rmin = 0.1g for s = 0.6g) and the minimum angle between

beams was assumed to be as α (e.g. α = 20◦). A uniform triangular mesh could be obtained

with parameter s = 0g. Using this grid generation method, the beams could cross each other

in two dimensional calculations (similarly as in [25]) but they did not intersect each other in

three–dimensional analysis. To generate a mesh in three–dimensions an analogous method

is used, with tetrahedral grid used instead of triangular one.

Alternative method of connecting points generated in this manner is to use a Delaunay

triangulation. Then the parameters rmax and α become irrelevant. The Delaunay triangula-

tion for each point creates a triangle (or tetrahedron in 3D) which is circumscribed by the

smallest possible circle (or sphere) containing this point and only two more points (or three

more points in three–dimensions).

The generated lattice mesh has in fact nothing to do with concrete or any other brittle ma-

terial. To make the model of concrete more realistic, the material structure must be overlaid

on the lattice.

Table 4.5: Mesh generation parameters used in the Lattice Geometrical Model

Mesh generation parameters

g cell size [meter]

rmax maximum beam length [meter]∗

α min angle between beams [radians]∗

s mesh irregularity [meter]

∗parameter used only in non–Delaunay generation method
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Figure 4.21: Scheme to assume a non–uniform distribution of beams in the lattice (s – size of interior

squares, rmax – maximum beam radius, a – minimum angle between two beams, g – size of triangular

grid)

4.5.2 Distribution of aggregates

To project the aggregate structure onto the lattice, the aggregates are first generated using

a selected grading curve. A certain amount of aggregates with diameters d1, d2 . . . dn is

generated to fit the grading curve (Sect. 2.2, Fig. 2.10). Then, the aggregates are randomly

placed inside the mesh with preserving a minimal mutual distance given by Eq. 2.4. The

minimum aggregate diameter is 2 mm. The lattice beam length is assumed to be ≈ 1 mm

which is longer than this assumed in [154] (equal to one third of the aggregate size). The

beam is longer to reduce the computational effort.

When aggregates are placed inside the mesh, the lattice beam elements obtain different

properties depending on whether they are a cement matrix, an aggregate or a bond (Fig. 2.11

in Sect. 2.2).

4.6 Non–local approach to calculate strain

To decrease the material brittleness in calculations (which is usually too large [156] in a 2D

one–phase material), a non–local approach [10] can be used to calculate strains [97]. In the

calculations, the normal strain in each beam can be assumed to be non–local (replacing the

formula for strains in step k7 in Fig. 4.7):

kε̄ =

∑
i

w(k,ir)iε id cos(k,iα)

∑
i

w(k,ir)id cos(k,iα)
, (4.20)

where the index i refers to all beams within a certain radius (eg. 3lc), w(•) is the weight-

ing function, k,ir is a distance between the mid–point of the beam k and the mid–points of

other neighboring beams i and k,iα is an angle between the beams. The beams do not have

to be connected. In general, it is required that the weighting function should not alter an

uniform field, which means that it must satisfy the normalizing condition [10]. Therefore,
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Figure 4.22: Range of averaging using gaussian distribution; [19]

as a weighting function w(r) in Eq. 4.20, a Gauss distribution function for 2D problems was

used:

w(r) =
1

lc
√

π
e
−( r

lc
)

2

, (4.21)

where the parameter lc is a characteristic length of micro–structure. The averaging in Eq. 4.20

is restricted to a small representative area around each material point (the influence of points

at the distance of r = 3lc is only of 0.1%, see Fig. 4.22).

4.7 Other fracture parameters

It is possible to introduce more fracture parameters into the model. The parameters assumed

by the author are listed in Tab. 4.6. The critical compressive strain is used to remove a beam

when the beam strain in compression iε (see Fig. 4.18) exceeds εmax. The shearing and bend-

ing angle is calculated using the angular difference between the current beam’s orientation,

and initial beam’s orientation at which it would come back to the relaxed position with re-

spect to neighboring beams. This angle is different on both ends of the beam. Therefore half

of their difference and sum can be interpreted as geometrical equivalents of shearing:

iτ =
A
i α + B

i α

2
(4.22)

and bending:

iχ =
A
i α − B

i α

2
, (4.23)

where angles A,B
iα are the original angular position of a beam with respect to its neighboring

beams. Similarly a maximum torsion angle can be introduced.

Table 4.6: Additional fracture parameters

Additional fracture parameters

εmax critical compressive strain [-]

τmax critical shearing [rad]

χmax critical bending [rad]
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4.8 Stress and force

The Lattice Geometrical Model, due to its geometrical nature does not include initially prop-

erties such as stresses, or forces. However it is possible to obtain stresses in a single beam

prescribing the Young’s modulus E. The resultant force F can be calculated in a selected

specimen’s cross–area A, with the aid of corresponding normal strains in each beam iε
(Fig. 4.7) projected on the unit normal to the cross–section plane, longitudinal stiffness pa-

rameters ikl, and moduli of elasticity iE:

F = A∑
i

iε(i~n ·~nA)ikl iE, (4.24)

where the sum is made over all beams that intersect the selected specimen’s cross–section A

and~nA is the unit normal of the cross–section A.

4.9 Model properties

The most important property of this model, distinguishing it from other lattice models, is

that during bending the angle between elements changes. This property has following conse-

quences: first, it is not possible to transfer shearing from one beam’s end to another (although

it’s possible to calculate the shearing angle). Second, it is possible to achieve the Poisson’s

ratio in the full range (ν ∈ 〈−1,0.5〉, Sect. 4.9.2).

Another property of this model is that it works without time, mass and beam area. It is

possible to calculate forces (see Sect. 4.8) by introducing the modulus of elasticity.

4.9.1 Conservation of motion and shape

The model does not have kinetic energy or energy of deformation. However it exhibits

the conservation of movement (aka kinetic energy) and, to some extent, conservation of

deformation (aka energy of deformation).

The conservation of movement is achieved by component i
~N (Eq. 4.1) – the beam always

repeats its movement from the previous calculation step. Thus if the beam is not constrained

(like other beams that move in different directions) the beam moves or rotates with constant

velocity. This conservation of movement propagates from the single beam to the whole body.

Figure 4.23 a shows a specimen without supports with an initial horizontal displacement in

the first calculation step. Figure 4.23 b shows the increasing distance between points A and

B. Thus movement with a constant velocity never stops. Figure 4.24 a shows a specimen

connected to a single support and with an initial vertical displacement in the first calculation

step. The oscillation of distance between points A and B can be observed, which means

that the specimen preserves some of its rotational velocity. After large number of steps the

rotation will cease.

Deformation is conserved by all components of i
~K (Eq. 4.2). Figure 4.25 a shows a

specimen with an initial tensile deformation. The components of i
~N, also play an important

role because they contribute to a faster propagation of the deformation wave in the mate-

rial. Figure 4.25 b demonstrates that the specimen loses its elastic behavior without those

components.

The ,,mass” is not conserved (if one would call it a mass, since the elements have no

mass), due to the beam removal during the fracture preocess.
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Figure 4.23: Conservation of movement: (a) induced horizontal displacement in the first step; (b) pro-

gressive forward movement of the specimen
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Figure 4.24: Conservation of rotational movement: (a) vertical displacement induced in the first step;

(b) rotation around the support ceases after large number of steps
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Figure 4.25: Shape conservation in tension: (a) induced horizontal displacement in the first step;

(b) oscillation of the specimen until reaching its original shape (solid line – full version of the model,

dashed line – without translation component i
~N (Eq. 4.1))
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Figure 4.26: Shape conservation in bending: (a) vertical displacement induced in the first step;

(b) slow convergance back to its original shape
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(a) (b)

Figure 4.27: Sample specimen with regular mesh subject to uni-

axial extension with rough edges, for ratio between the bending

and longitudinal stiffness p = 100 (kb = 100 and kl = 1): (a) be-

fore extension; (b) after extension

Figure 4.28: Sample irregular

mesh used for examination of

Poisson’s ratio

4.9.2 Poisson’s ratio

If the lattice mesh used in this model is considered as a continuum material (which it aims

to modelize), then the Poisson’s ratio ν can be measured.

If the bending stiffness kb is several times higher than the longitudinal stiffness kl , there

exists the absolute priority in the model to preserve the original angle between beams, while

ignoring their need to presereve the original length. Thus the ratio p between the bending

and longitudinal stiffness:

p =
kb

kl

, (4.25)

has the major influence on the Poisson’s ratio. Figure 4.27 shows a speciemen subject to

uniaxial extension with rough edges using p = 100.

To measure the change of Poisson’s ratio ν versus p, a set of 800 randomly generated

specimens were used, using both mesh generation types (with s = 0.6g, α = 20◦, rmax = 2g,

g = 1 mm, Sect. 4.5.1), one of which is shown in Fig. 4.28. Figure 4.29 shows the influence

of p on Poisson’s ratio ν . Tension and compression were considered with smooth horizon-

tal edges at the beginning of the deformation process. The fracture criterion was not used

(beams were not removed). If the stiffness parameter p = 0.1, the Poisson’s ratio is 0.3. In

turn, if the parameter p > 1, the Poisson’s ratio became negative (with the smallest value

approximately equal to ν ∼= −1.0 at p = 10000). The behavior of beams with values of p

approaching zero corresponds obviously to that of bars [90, 96, 97].

4.9.3 Effect of mesh type and density

To demonstrate the effect of mesh generation type, eight specimens of a size 10×10 cm2

with a small imperfection in the middle were generated using parameters listed in Tab. 4.7.

The specimens were subject to uniaxial extension in a vertical direction applied to the top

and bottom (displacement in each calculation step was t = 2 · 10−8 m), with smooth edges.

Figure 4.30 shows the specimens after failure.
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Figure 4.29: Influence of the ratio between the bending and longitudinal stiffness p = kb/kl on Pois-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.30: Meshes used to demonstrate the effect of mesh type and density (after failure), according

to Table 4.7
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Figure 4.31: Effect of mesh randomness parameter s on the stress–strain curve during uniaxial exten-

sion, using Delaunay mesh generation (σ22 – normalized vertical stress, ε22 – vertical strain, parame-

ters as in Table 4.7)
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Table 4.7: Parameters used to demonstrate the effect of mesh type and density

No. Stiffness Fracture Mesh generation

kl kb εmin Delaunay g rmax α s

(a) 1 0.6 0.002 + 0.005 m — — 0.0g

(b) 1 0.6 0.002 + 0.005 m — — 0.6g

(c) 1 0.6 0.002 + 0.005 m — — 1.2g

(d) 1 0.6 0.002 — 0.005 m 1.9g 20◦ 0.0g

(e) 1 0.6 0.002 — 0.005 m 1.9g 20◦ 0.6g

(f) 1 0.6 0.002 — 0.005 m 1.9g 20◦ 1.2g

(g) 1 0.6 0.002 — 0.002 m 1.9g 20◦ 0.6g

(h) 1 0.6 0.002 — 0.012 m 1.9g 20◦ 0.6g
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Figure 4.32: Effect of mesh randomness parameter s on the stress–strain curve during uniaxial exten-

sion, using non–Delaunay mesh generation (parameters as in Table 4.7)
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Figure 4.33: Effect of mesh density parameter g on the stress–strain curve during uniaxial extension,

using non–Delaunay mesh generation (parameters as in Table 4.7)
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Figure 4.34: Effect of number of beams intersecting the cross section on normal vertical stress σ22

(parameters as in Table 4.7)
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Figure 4.35: Effect of strain increment on normal vertical stress σ22 (parameters as in Ta-

ble 4.7): (a) t = 2 ·10−7, ∆ε = 0.000002%; (b) t = 2 · 10−8, ∆ε = 0.0000002%; (c) t = 2 · 10−9,

∆ε = 0.00000002%

Figure 4.31 shows the effect of the mesh randomness on the stress–strain curve (mesh was

generated using the Delaunay method.) The regular mesh (s = 0g, Fig. 4.31 a, Figure 4.30 a)

causes the most brittle behavior. The irregular mesh (s = 1.2g, Fig. 4.31 c, Figure 4.30 c)

causes the less brittle behavior. The effect of the mesh irregularity is smaller, when the non–

Delaunay generation method was used (Fig. 4.32), although it is still present. Figure 4.33

shows the effect of the mesh density on the stress–strain curve. The mesh with a big cell

size (g = 0.012 m, Fig. 4.33 h, Fig. 4.30 h) during failure is ductile, and each jump on the

softening curve corresponds to the removal of a single beam from the lattice. In turn, meshes

with smaller cell sizes appear to be more brittle, and the jumps become less pronounced,

because there are more beams in the lattice.

An increase of α and a decrease rmax have the same effect as using Delaunay mesh

generation method instead of non–Delaunay – they increase the material brittleness, and

decrease the peak strain value. Apart from that, the mesh generation parameters have little

impact on the brittle/ductlie behavior of the material (it is always more or less brittle).

In Figures 4.31–4.33 the normalized vertical stress σ22 was calculated, so that the curves

can be compared with respect to their shape and peak strain. However in each mesh, a differ-

ent number of beams intersect the cross–section A, therefore the non–normalized stress will

be different for each specimen. Figure 4.34 shows the stress σ22 carried by two specimens

(d) and (e) (Tab. 4.7), with the assumed modulus of elasticity E = 1 Pa. Therefore the total

strength carried by the material is largely influenced by the mesh generation type and param-

eters α , rmax and g. This can be considered as a material ,,density” – a more dense mesh can

carry a higher load.
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4.9.4 Effect of strain increment

In the previous Section 4.9.3, all calculations were performed using the displacement in each

increment step t = 2 · 10−8 m. Therefore, the strain increment ∆ε = 2·10−8

0.1 m = 0.0000002%.

Figure 4.35 shows the influence of different strain increments on the stress–strain curve

(using specimen (g) from Tab. 4.7). There is a time/precision problem selecting too big

strain increment (Figure 4.35 a), and selecting too small one (Figure 4.35 c). The difference

between the stress–strain curves for the case (b) and (c) is small (however it exists). Thus

there exists a maximum strain increment at which, the results are not affected. It turns out

that it depends on how many calculation steps are needed to remove a single beam (due to

the fracture criterion εmin), which is calculated as:

Scritical =
gεmin

t
. (4.26)

It has been found that the values: Scritical > 500 in tension and Scritical > 500ν in compression

(ν – Poisson’s ratio) produce results not influenced by the displacement value t.

4.10 CPU and memory consumption

The classical lattice model developed by van Mier, Schlangen, Lilliu and van Vliet [15, 99,

133–138, 153–158] uses the Finite Element Method for performing calculations [136, 156].

A global stiffness matrix is built and its inverse is required to obtain the response of the sys-

tem. The size of a single lattice element has the same order of magnitude as the size of an

aggregate (usually one third of an aggregate, lb < dmin
a /3), thus the number of elements for

a small two–dimensional 10×10 cm2 specimen using Delaunay triangulation is 30 000 (for

the element length of 1 mm), whereas for three–dimensions (10×10×10 cm3) it is around

8 000 000 elements. The effort to inverse the stiffness matrix has been recently reduced by

using a conjugate gradient solver [136]. But the size of simulation still remains prohibitive

for larger systems [136], due to calculation time and memory requirements. Moreover, the

calculation is of the implicit type, which makes it difficult to distribute it using several

computers and multiple processors. The calculations using the classical lattice model re-

quire from 7 hours to 158 days to be completed [156] (without using the optimizations by

Schlangen [136]), however there is no comparison between the number of elements and time

spent.

The computations performed in Sect. 4.9.3 with the newly developed Lattice Geometrical

Model require from 5 minutes (for specimens (a)–(f)), with the beam length equal ≈ 5 mm

(Tab. 4.7, parameter g) to 20 minutes for the specimen (g) with the beam length of ≈ 2 mm

(specimen size 10×10 cm2). The calculations of a two–dimensional 10×10 cm2 specimen

with the beam length ≈ 1 mm last about 2 up to 10 hours (depending on the strain increment)

and consumes about 70 MB of RAM. The three–dimensional specimen 10×10×10 cm3 cal-

culated in Sect. 5.7 with the beam length ≈ 3.3 mm (subjected to tension) needs 14 hours to

be completed (it included 380 000 beams and used 1.7 GB of the RAM memory). Calculat-

ing such specimen in the Nooru–Mohamed test (combined shear–extension) one needs about

4 days. However, the use of the beam length ≈ 1 mm in a 3D specimen 10× 10× 10 cm3

would require 40 GB of the RAM memory (to store 8 000 000 beam elements) and the

calculation would take 27 days.
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It appears clear now that currently the limiting factor is not the processor speed (time of

calculations) but the memory required. Fortunately, both problems can be solved (computa-

tion time and memory size) due to fact that the Lattice Geometrical Model is of explicit type,

which means that the computation time and memory requirements will scale almost linearly

with respect to the amount of processors and computers used in a parallelization method.

AMD plans to release this year (2007) a quad-core processor on a motherboard with 4 pro-

cessors, such a PC would reduce the calculations of 27 days into 2 days. Several computers

together could sum up the available memory. The memory size requirements can be fur-

ther reduced (eg. from 40 GB down to 10 GB), since in the current implementation of the

model the author did not pay enough attention to this problem. This will be done next, along

with the parallelization of the code. The Moore’s Law implies that the size of the computer

memory doubles every 2 years (and holds true since year 1980, the beginning of personal

computers), which helps to predict when the newly developed model will be applicable for

larger systems. The processor used for calculations of results presented in this thesis was

AMD 4400 (dual–core), but currently only single processor was used.

Furthermore a multi–scale technique can be used by combining the model with coarse

FEM meshes or by doing a coarse discretization (larger beam length) outside of the area with

cracks.

With comparison to the classical lattice model [136, 156], which employs FEM, there

is a major computation speed–up in the case of two–dimensional calculations. Most of the

results presented in the Chapter 5 were obtained in time less than 10 hours.



78 CHAPTER 4. DESCRIPTION OF THE LATTICE GEOMETRICAL MODEL



Chapter 5

Verification of the model

This chapter presents the results obtained with a novel Lattice Geometrical Model developed

by the author. First the parameters are calibrated and then comparison is done with own

experimental results and experimental results from literature. The tests for tension, com-

pression, combined extension–shear and three point bending are shown. The influence of

aggregates on material response is investigated.

5.1 Calibration of model parameters

In this section the basic tests are simulated, to determine the effect of material parameters

on the behavior of the simulated material. Finally, the material parameters are chosen that

describe concrete in the most satisfactory way. In the calculation εmin is assumed 0.0002

because for this tensile strain the typical concrete specimen reaches its strength.

Uniaxial compression with smooth edges

The effect of the stiffness parameter p = kb/kl on the evolution of the global stress–strain

curve σ–ε (vertical normal stress versus the vertical strain) and crack propagation in a speci-

men during uniaxial compression with smooth edges is shown in Figs. 5.1 and 5.2 for param-

eters listed in Tab. 5.1 (specimen size 10× 10 cm2, σ = P/b, ε = u2/h,P – global vertical

force, u2 – vertical displacement of the top edge).

The strength and ductility (ratio between the energy consumed during the fracture pro-

cess after and before the peak) increase with increasing stiffness parameter p. The material

becomes elastic for p > 0.6, quasi–brittle for 0.025 > p > 0.01 and brittle for p = 0.001. In

the last case, the vertical global strain corresponding to the material strength in compression

is about 0.0003 (whereas critical tensile strain is εmin = 0.0002). The cracks are predomi-

nantly vertical (parallel to the loading direction) if p > 0.2 (Fig. 5.2 a). In the case of p < 0.1,

the predominant cracks are more inclined (Figures 5.2 b and 5.2 c).

First version of the model used both critical tensile strain εmin and critical compressive

strain εmax, and the latter was assumed to be the ten times larger as the former, because con-

crete can carry approximately 10× more stress in compression than in tension. Figures 5.3

and 5.4 show the results with εmax = 0.002. The results are similar to those in previous case

for p � 0.3. The strength increases with increasing p. The material is brittle for p ≤ 0.01

and p ≥ 0.3. For p � 0.3 the cracks are inclined (Fig. 5.4 j,l). In turn, for p ≥ 0.3, the main

crack is horizontal (perpendicular to the loading direction, Fig. 5.4 g).

79
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Table 5.1: Assumed parameter values used to examine their effect on material behavior

No. Stiffness Fracture Young’s Mesh generation

kl kb εmin εmax modulus Delaunay g rmax α s

(a) 1 0.6 0.0002 — 20 GPa — 0.001 m 1.9g 20◦ 0.6g

(b) 1 0.3 0.0002 — 20 GPa — 0.001 m 1.9g 20◦ 0.6g

(c) 1 0.06 0.0002 — 20 GPa — 0.001 m 1.9g 20◦ 0.6g

(d) 1 0.025 0.0002 — 20 GPa — 0.001 m 1.9g 20◦ 0.6g

(e) 1 0.01 0.0002 — 20 GPa — 0.001 m 1.9g 20◦ 0.6g

(f) 1 0.001 0.0002 — 20 GPa — 0.001 m 1.9g 20◦ 0.6g

(g) 1 0.6 0.0002 0.002 20 GPa — 0.001 m 1.9g 20◦ 0.6g

(h) 1 0.3 0.0002 0.002 20 GPa — 0.001 m 1.9g 20◦ 0.6g

(i) 1 0.06 0.0002 0.002 20 GPa — 0.001 m 1.9g 20◦ 0.6g

(j) 1 0.025 0.0002 0.002 20 GPa — 0.001 m 1.9g 20◦ 0.6g

(k) 1 0.01 0.0002 0.002 20 GPa — 0.001 m 1.9g 20◦ 0.6g

(l) 1 0.001 0.0002 0.002 20 GPa — 0.001 m 1.9g 20◦ 0.6g
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Figure 5.1: Effect of the stiffness ratio p = kb/kl between the bending stiffness and longitudinal stiff-

ness on the stress–strain curve during uniaxial compression with smooth edges (beams were removed

when local εmin = 0.0002), material parameters as in Table 5.1 (σ22 – vertical normal stress, ε22 –

vertical normal strain)
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(b) (e) (f)

Figure 5.2: Effect of the stiffness ratio p = kb/kl between the bending and longitudinal stiffness on

the crack pattern during uniaxial compression with smooth edges (beams were removed when local

εmin = 0.0002), material parameters as in Table 5.1
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Figure 5.3: Effect of the stiffness ratio p = kb/kl between the bending stiffness and longitudinal stiff-

ness on the stress–strain curve during uniaxial compression with smooth edges (beams were removed

when local εmin = 0.0002 and εmax = 0.002), material parameters as in Table 5.1 (σ22 – vertical

normal stress, ε22 – vertical normal strain)
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(g) (j) (l)

Figure 5.4: Effect of the stiffness ratio p = kb/kl between the bending and longitudinal stiffness on

the crack pattern during uniaxial compression with smooth edges (beams were removed when local

εmin = 0.0002 and εmax = 0.002), material parameters as in Table 5.1

The effect of the roughness of both horizontal edges on the fracture process during uni-

axial compression is shown on Fig. 5.5, for parameters (a) and (f) from Tab. 5.1. The results

with very rough edges (horizontal displacements along both edges were assumed to be zero)

indicate the appearance of diagonal intersecting cracks and stiff wedges in the specimen.

Uniaxial extension with smooth edges

The results for uniaxial tension with a small notch at mid-height of the left side and smooth

horizontal edges are demonstrated in Fig. 5.6 (cases (b), (d) and (f) from Tab. 5.1). The

material behaves in the elastic-purely brittle way for all values of p. The strength increases

with increasing p, and the brittleness increases with decreasing p. The overall vertical strain

corresponding to the peak stress values is about 0.00007–0.00009 (thus it is smaller than the

local εmin). The crack pattern practically does not depend on the parameter p. The main

crack is always initiated at the notch and then propagates almost horizontally through the

specimen (Fig. 5.25 a).

Simple shear

Figure 5.7 shows the effect of p = kb/kl on the fracture process in a specimen subject to

simple shear (upper and lower surfaces move in opposite directions) for smooth and very

rough edges. The main cracks are created in the direction perpendicular to the normal stress.

The results show that the inclination angle of fracture due to shearing becomes more steep

with increasing p (decreasing Poisson’s ratio), and decreases in the case of smooth edges. In

the case of smooth edges, more pronounced cracks are created.

Effect of other fracture parameters

The additional fracture parameters: critical shearing angle τmax and critical bending angle

χmax were assumed (Tab. 4.6). Figure 5.8 shows the fracture process in the specimen subject

to shearing. The results indicate that χmax controls the inclination angle of the fracture, and

τmax controls the number of parallel cracks that occur. However with this additional rupture
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(a) (f)

Figure 5.5: Effect of parameter p = kb/kl on fracture process in compression with rough edges (εmax =
0.0002), material parameters as in Table 5.1
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Figure 5.6: Effect of the stiffness ratio p = kb/kl between the bending stiffness and longitudinal

stiffness on the stress–strain curve during uniaxial extension (beams were removed when local εmin =
0.0002), material parameters as in Table 5.1 (σ22 – vertical normal stress, ε22 – vertical normal strain)
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(a) (b) (c)

Figure 5.7: Effect of parameter p = kb/kl on fracture process in simple shear (εmin = 0.0002):

(a) p = 0.6, smooth edges (b) p = 0.6, rough edges (c) p = 0.01
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Figure 5.8: Fracture process in a specimen subject to shearing, depending of values of critical shearing

angle τmax and critical bending angle χmax (p = 0.01)
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Figure 5.9: Experimental setup in Nooru–Mohamed

test; [42]

Figure 5.10: Experimental crack pattern in

loading condition 4c; [42]

criterion, the material behaves more brittle. The gain of controlling the inclination angle of

fracture does not justify the addition of these two parameters, especially that kb can also be

used to control this angle (Fig. 5.7).

Extension–shear test (Nooru–Mohamed test [111])

Figure 5.9 depicts the setup of the mixed–mode fracture test described in [111]. A double–

notched prism (200 mm×200 mm×50 mm) with two 25 mm deep notches, was loaded

in tension and shear. Various proportional and non–proportional loading paths were fol-

lowed [111], with both displacement and load controls. This test is frequently used as a

benchmark to check the ability of constitutive models to simulate complex crack paths. The

loading path considered here is non–proportional, first the shear force Fs is increased up to a

certain value, while tensile force FT is kept zero. Afterwards, the shear force is kept constant

while tensile force is applied under displacement control until the specimen fails completely.

In these experiments, the shear force was kept constant at 5 kN≈ Fs,max/6 (path 4a in [111]),

10 kN≈ Fs,max/3 (path 4b in [111]) and 27.38 kN= Fs,max (path 4c in [111]), where Fs,max is

the maximum force that the specimen could sustain in the absence of the tensile force.

Figure 5.10 shows the experimentally obtained crack path for the loading path 4c. Fig-

ure 5.11 shows results obtained with the the model. The parameter p has a major influence

on the inclination angle of the resulting crack. For p = 0.001 (Figure 5.11 a), the crack is

always horizontal, and the material behavior corresponds to that of rods. Increasing p up

to 0.2 causes an appearance of the inclined crack, which is not curvilinear as it should be,

and some beam elements still fail along the horizontal path (Figure 5.11 b). With p = 0.6, a

correct fracture pattern is obtained for εmin 10× larger (εmin = 0.002, Figure 5.11 c). In turn

for εmin = 0.0002, the obtained crack pattern with p = 0.6 is different than in the experiment

(Figure 5.11 d) and the crack propagation does not start at the notch. This behavior is caused

by the beam failure before the material could reach the skew–like shearing deformation re-

sponsible for the curvilinear crack path.
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(a) (b)

(c) (d)

Figure 5.11: Effect of parameter p = kb/kl on fracture process in Nooru–Mohamed test, with loading

condition 4c: (a) p = 0.001 (εmin = 0.0002), (b) p = 0.2 (εmin = 0.0002), (c) p = 0.6, specimen fails

correctly for εmin = 0.002 (d) p = 0.6, specimen fails incorrectly for εmin = 0.0002

Table 5.2: Parameters used to demonstrate the lack of effect of εmin on the stress–strain curve

Stiffness Fracture Young’s Mesh generation

kl kb εmin modulus Delaunay g rmax α s

1 0.6 0.0002 20 GPa — 0.001 m 1.9g 20◦ 0.6g

0.1 0.06 0.002 20 GPa — 0.001 m 1.9g 20◦ 0.6g
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The material parameters

Results presented in this section show that:

1. The peak compression strain in the model (if present) is around 10× smaller than the

peak compression strain of the concrete (Fig. 5.1 e,f and Fig. 5.3 k,l),

2. the peak extension strain is around 10× smaller than the peak extension strain of con-

crete (Fig. 5.6),

3. the parameter εmax which influences beams subject to compression causes a non realis-

tic fracture patterns (crack perpendicular to loading direction) in compression (Fig. 5.4 g)

for values of parameter p ≥ 0.3,

4. realistic fracture pattern in compression is obtained only for p ≤ 0.01 (Fig. 5.4 f)

5. simulations of the Nooru–Mohamed test can produce correct results for p≥ 0.6 (Fig. 5.11 c)

but only for εmin being 10× larger,

6. crack pattern in uniaxial extension does not depend on p.

The ill fracture pattern when using εmax is the reason to abandon this parameter.

To solve the problem of the peak compression/extension strain being 10× too small the

local value of εmin must be assumed to be 10× larger, and kl and kb parameters must be

set 10× smaller to retain the same modulus of elasticity 20 GPa. Figure 5.12 demonstrates

the lack of the effect of εmin on the stress–strain curve in uniaxial extension for material

parameters given in Tab. 5.2. This change, however, influences the produced crack patterns

in the Nooru–Mohamed test so that a correct result is obtained (Fig. 5.11 c). Incidentally the
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Figure 5.12: Effect of εmin on the shape of the stress–strain curve in uniaxial tension
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10× higher value of εmin = 0.002 corresponds well to the results obtained in experimental

measurements of strain on the surface of concrete. Figure 3.23 b(B) shows the strain on the

surface of concrete at the peak of the stress–strain curve, and the green color (value 0.002)

dominates in the fracture zone. The red color (strain 0.005) corresponds to the crack that has

already appeared (beam elements in the model were already removed).

A correct material failure in compression is obtained for p≤ 0.01 (Poisson’s ratio ν = 0.3),

while in combined–shear extension the value of parameter p = 0.6 is required. The proposed

solution to is to assume p smaller in tension and higher in compression. To choose p for

compression one should not consider the stress–strain curves from Figure 5.1 because they

change dramatically with the modified p. Figure 5.2 b shows a desired crack pattern for

concrete for p = 0.3 (Poisson’s ratio ν = 0.17), also Figure 5.2 e is not too far from correct

(p = 0.025, Poisson’s ratio ν = 0.3, Fig. 4.29). Therefore a arbitrary value in between was

chosen p = 0.2. The change from 0.2 in compression to 0.6 in tension should be continuous

to avoid instabilities in the calculations, therefore an arbitrary value of εmin/3 was chosen as

a limit for a linear transition between the two. Figure 5.13 a shows the assumed value of p

as the function of the beam element strain, and the corresponding Poisson’s ratio is shown

on Fig. 5.13 b.

The calibrated parameters for the Lattice Geometrical Model that should describe cor-

rectly the concrete material are listed in Tab. 5.3. Following sections demonstrate results

with parameters based on those calibrated parameter values. In experiments with uniaxial

tension the changes in parameter p (Fig. 5.13) do not affect the results.

Figure 5.14 shows the simulation results for a Nooru–Mohamed test for new calibrated

parameters using a three–phase material from Tab. 5.6 (three–phase material is described in

following sections). The results correspond well to results by Cusatis [42]. The results for

uniaxial compression are presented in Sect. 5.6.

Table 5.3: The calibrated material parameters

Stiffness Fracture Young’s Mesh generation

kl kb,tension kb,compr εmin modulus Delaunay g rmax α s

0.1 0.06 0.02 0.002 20 GPa — 0.001 m 1.9g 20◦ 0.6g

0.1 0.06 0.02 0.002 20 GPa X 0.001 m — — 0.6g

ε

p = kb
kl
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Figure 5.13: Change of parameter p = kb/kl (a) and resulting change of Poisson’s ratio (b) in function

of beam element strain iε
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Figure 5.14: Fracture pattern in a Nooru–Mohamed test in three–phase material (gray denotes un-

damaged area, black color denotes aggregates, white color represents fracture damage)

5.2 Uniaxial tension (one and two–phase material)

Figures 5.15–5.16 show the effect of aggregates on the fracture behavior of 2D specimens

under uniaxial extension (without interfacial transition zones).

The 2D calculations were carried out with a specimen size of 200×200 mm2 (b×h) com-

posed of 180 000 beam elements distributed non–uniformly (α = 20◦, s = 0.6g, g = 1 mm,

rmax = 2g). The minimum beam length was about 0.3 mm and the maximum one was about

2 mm.

The ratios between the parameters kl and εmin for the cement matrix and aggregate were

assumed on the basis of ratios between the elastic Young’s moduli and tensile strengths,

respectively, assumed in [154] (see Sect. 2.2), as listed in Tab. 5.4.

Table 5.4: Paramaters used in calculation with two–phase material

Phase Young’s modulus p = kb/kl kl local εmin

Cement matrix Em = 20 GPa pm = 0.6 0.1 εm = 0.002

Aggregate Ea = 60 GPa pa = 0.6 0.3 εa = 0.00133
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Figure 5.15: 2D specimen subject to uniaxial extension (one–phase material): p = kb/kl = 0.7 (with

kl = 0.1) and local εmin = 0.0002 (as in Tab. 5.4)
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Figure 5.16: 2D specimen subject to uniaxial extension (two–phase material), material parameters as

in Tab. 5.4
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The particle distribution curve for aggregate is shown in Fig. 5.16 with the mean ag-

gregate diameter of d50 = 3.5 mm. The aggregate volume density was taken as 50%. This

2D density is smaller than the particle density in real 3D concrete specimen usually equal

to 70− 75% [154]. The aggregate distribution was generated following the method given

in [60] (Sect. 4.5.2).

The results of the uniaxial tensile test in Fig. 5.16 show evidently that the presence of

only aggregates (without interfacial zone) does not significantly affect the load–displacement

curve which remains still too brittle as compared to experiments with concrete specimens

[156, 157], and is very similar to results with one–phase material on Fig. 5.15.

5.3 Uniaxial tension (three–phase material)

Figures 5.17–5.20 present the results with a square concrete specimen considered as a three–

phase material. The 2D calculations were carried out mainly with a specimen size of 200×
200 mm2 (b× h) composed of 180000 beam elements distributed non–uniformly (α = 20◦,

s = 0.6g, g = 1 mm, rmax = 2g). The minimum beam length was about 0.3 mm and the

maximum one was about 2 mm. The assumed material parameters are given in Table 5.5.

The interface had the lowest strength. The aggregate density was assumed to be 25% or

50%, respectively. The mean aggregate diameter d50 was taken as 3.5 mm for the aggregate

size of the range 2− 8 mm and 12 mm for the aggregate size of the range 2–16 mm. Five

simulations were performed for each case. The interfacial zones were added by assigning

different properties to the beams which previously directly connected the aggregate with

cement matrix (Fig. 2.11 on page 11).

The strength and pre–peak non–linearity decrease with increasing aggregate density and

decreasing mean aggregate diameter. In turn, the material ductility increases when the den-

sity increases. The vertical strain corresponding to the peak increases with decreasing par-

ticle density. At the low particle content, de–bonding occurs extensively near the isolated

aggregates (most of fractured elements are in bonds). This micro–cracking is responsible

for the non–linear behavior in the pre–peak part of the stress–strain diagram. Next, after the

peak, the fracture process progressively spreads through the entire specimen in the form of a

macro–crack linking de–bonded aggregates in lines. With increasing number of aggregates,

the fraction of bond elements increases and de–bonding prevails. At the high particle density,

percolation of bond zones occurs, and the condition for macro–crack nucleation and growth

occurs early in the loading history. The material becomes significantly weaker (since the

interface strength is the weakest component of the system) and the pre–peak non–linearity

does not appear. Since the amount of aggregates is large, the cracks cannot propagate in long

lines. Instead of this, several discontinuous macro–cracks propagate in a tortuous manner.

Table 5.5: Paramaters used in calculation with three–phase material

Phase Young’s modulus p = kb/kl kl local εmin

Cement matrix Em = 20 GPa pm = 0.6 0.1 εm = 0.002

Aggregate Ea = 60 GPa pa = 0.6 0.3 εa = 0.00133

Interface bond Eb = 14 GPa pb = 0.6 0.07 εb = 0.0005



92 CHAPTER 5. VERIFICATION OF THE MODEL

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0  0.0002  0.0004  0.0006

S
tr

es
s 

σ 2
2 

[M
P

a]

Strain ε22 [-]

average
min
max

10

20

30

40

50

60

70

80

90

2 3 4 8 16

S
ie

ve
 p

as
si

ng
 [m

as
s 

- 
%

]

Sieve size [mm]

Figure 5.17: 2D concrete specimen subject to uniaxial extension (three–phase material), aggregate

area percentage 50%, d50 = 3.5 mm, material parameters as in Table 5.5 (σ22 – vertical normal stress,

ε22 – vertical normal strain)

The cracks overlap and form branches. As a result, the material ductility grows after the

peak. All curves with consideration of interfacial transition zones resemble qualitatively the

experimental curves for real concrete [156]. The uniaxial tensile strength changes between

0.7−1.7 MPa. The scatter of the material strength increases with decreasing particle density

due to the larger possibility at the choice of the propagation way.

The vertical strain ε22 corresponding to the peak varies between 0.0002–0.0006, and

equals to 0.0002 for grading curve assumed from experimental results presented in Chap-

ter 3, for gravel concrete (Figures 5.17 and 3.14), where the diameters below 2 mm are not

discretized into the mesh.

5.4 Size effect (uniaxial tension, three-phase material)

Figures 5.21–5.23 show a size effect during uniaxial tension (with the grading curve of

Fig. 5.17). Several numerical simulations were carrried out with two different rectangu-

lar concrete specimens: 10×10 cm2 and 20×20 cm2 using the same beam distribution. The

results show that the material strength and ductility increase with decreasing specimen size

(as in the experiments, Fig. 5.22) while the crack pattern remains similar (Fig. 5.23). In turn,

the fracture energy decreases.

The obtained outcomes from numerical experiments for uniaxial tension are qualitatively

in agreement with numerical solutions given in [99, 155, 156].
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Figure 5.18: 2D concrete specimen subject to uniaxial extension (three–phase material) aggregate

area percentage 50%, d50 = 12 mm, material parameters as in Table 5.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0  0.0002  0.0004  0.0006

S
tr

es
s 

σ 2
2 

[M
P

a]

Strain ε22 [-]

average
min
max

10

20

30

40

50

60

70

80

90

2 3 4 8 16

S
ie

ve
 p

as
si

ng
 [m

as
s 

- 
%

]

Sieve size [mm]

Figure 5.19: 2D concrete specimen subject to uniaxial extension (three–phase material) aggregate

area percentage 25%, d50 = 3.5 mm, material parameters as in Table 5.5



94 CHAPTER 5. VERIFICATION OF THE MODEL

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0  0.0002  0.0004  0.0006

S
tr

es
s 

σ 2
2 

[M
P

a]

Strain ε22 [-]

average
min
max

10

20

30

40

50

60

70

80

90

2 3 4 8 16

S
ie

ve
 p

as
si

ng
 [m

as
s 

- 
%

]

Sieve size [mm]

Figure 5.20: 2D concrete specimen subject to uniaxial extension (three–phase material) aggregate

area percentage 25%, d50 = 12 mm, material parameters as in Table 5.5

0

0.2

0.4

0.6

0.8

1

1.2

 0  0.01  0.02  0.03  0.04

N
or

m
al

iz
ed

 s
tr

es
s 

σ 2
2 

[-
]

Strain ε22 [%]

min, max values
small specimen
large specimen

Figure 5.21: The size effect for 2D concrete specimens subject to uniaxial extension with sizes 10×
10 cm2 and 20× 20 cm2, aggregate area percentage 50%, d50 = 3.5 mm, material parameters as in

Table 5.5, grading curve as in Fig. 5.17
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Figure 5.22: Experimental force-deformation diagram for 3 different dog-bone shaped specimens

h×b: (A) 75×50 mm2 , (B) 150×75 mm2, (C) 300×200 mm2 [156] (h - height, b - width)

Figure 5.23: Fracture in 2 concrete specimens of different size (20×20 cm2 and 10×10 cm2)
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Figure 5.24: Effect of the characteristic length on the stress–strain curve (p=0.6, specimen 100×
100 mm2): (a) lc=0 (local approach), (b) lc = g, (c) lc = 2g, (d) lc = 3g (non–local approach, σ22 –

vertical normal stress, ε22 – vertical normal strain)

5.5 Uniaxial tension with non–local approach

Section 4.6 describes the non–local approach to decrease the material brittleness in one–

phase material. Figures 5.24 and 5.25 demonstrate the results for a non–local approach

during uniaxial tension. The simulations were carried out with a specimen size 10×10 cm2

In the calculations, the different values of lc (lc = 0, 1g, 2g and 3g) were used. The re-

sults show that, the strength, normal strain corresponding to the peak and material ductility

increase with increasing lc.

A non–local approach contributes to a significant increase of the computation time. An

increase of ductility can be also achieved using a three–phase material.

5.6 Uniaxial compression (three–phase material)

Figure 5.28 demonstrates the crack pattern in uniaxial compression with smooth edges using

parameters listed in Tab. 5.6 using the three–phase material. The stress–strain curve is shown

in Fig. 5.26 and the evolution of Poisson’s ratio during compression is shown in Fig. 5.27.

The material remains in the elastic regime for about one third of the total strain (marked

with ’A’ on Fig. 5.26), and afterwards the inclination of the stress–strain curve becomes

smaller. Corresponding Poisson’s ratio prior to the point ’A’ remains below 0.4, (starting

from 0.2). After the material exceeds the elastic regime the Poisson’s ratio dramatically

increases, up to value of 1.

The results correspond well with results by Caballero [29] and with laboratory experi-

ments [157].
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(a) (b)

(c) (d)

Figure 5.25: Effect of the characteristic length lc on the fracture process (beams were removed when

local εmin = 0.0002, p = 0.6): (a) lc = 0 (local approach), (b) lc = g , (c) lc = 2g, (d) lc = 3g (non–local

approach)

Table 5.6: The calibrated material parameters (three–phase material)

Phase Stiffness Fracture Young’s

kl ptension pcompr local εmin modulus

Cement matrix 0.1 0.6 0.2 0.002 20 GPa

Aggregate 0.3 0.6 0.2 0.00133 60 GPa

Interface bond 0.07 0.6 0.2 0.0005 14 GPa
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Figure 5.26: Stress–strain curve in uniaxial compression with smooth edges (three–phase material)
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material)
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(a) (b)

Figure 5.28: Fracture pattern in 10×10 cm2 specimen subject to uniaxial compression with smooth

edges (using Delaunay mesh generation method Tab. 5.3) in three–phase material (gray denotes un-

damaged area, black color denotes aggregates, white color represents fracture damage): (a) in the

course of loading; (b) after failure

5.7 Three–point bending (comparison with experiments)

The experiments performed in Chaper 3 were carried out for small and medium specimens.

The model parameters were assumed from Tab. 5.6, with the grading curve from Figs. 5.17

and 3.14 (gravel). The resulting load displacement curve is shown in Fig. 5.29. The plot was

smoothed to remove the oscillations induced by the elastic behavior (Sect. 4.9.1, Fig. 4.26),

to increase readability. The oscillations indicate that the calculation step increment assumed

was too big. The load–displacement curve is in good agreement with the experimental results

of Fig. 3.17. The size effect was obtained (the peak force for the medium specimen is 4 kN,

for the small specimen 2.5 kN, Fig. 5.29 a,b) and the larger specimen is more brittle than

the medium specimen. For comparison, the simulation was performed (Fig. 5.29 c) with

assumed the same value of p = 0.6 for tension and compression, it turns out that material is

more brittle then (Fig. 5.29 a,c).

Figures 5.30 and 5.32 show the resulting crack pattern in the specimens. Figure 5.31

shows strains on the surface of concrete. The strains obtained are in well agreement with

Digital Image Correlation results (Fig. 3.24, gravel concrete).

5.8 Uniaxial extension in 3D (one–phase material)

3D simulations were performed with the specimen size of 10× 10× 10 cm3 with the cell

size g = 3.3 mm (corresponds to average beam length), and with the smaller specimen 5×
5× 5 cm3. A three–phase material was used (Tab. 5.6) with grading curve from Fig. 5.18

(d50 = 12 mm, aggregate volume percentage 45%).

Figures 5.33 and 5.34 show the the specimens after failure, Fig. 5.35 shows normalized

stress–strain curve. A pronounced size effect was obtained, and the smaller specimen has a

larger strength and ductility after the peak. As compared with 2D simulations, the material

becomes more ductile. It is in accordance with calculations by [99].
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Figure 5.29: Load–displacement curves in three–point bending test; (a) small specimen (ptension = 0.6,

pcompr = 0.2); (b) medium specimen (ptension = 0.6, pcompr = 0.2); (c) small specimen (the same value

of p = 0.6)

Figure 5.30: Crack pattern in three–point bending, small specimen
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Figure 5.31: Evolution of numerically calculated strain field during three–point bending simulation:

(a) small size beam; (b) medium size beam; (A) before the beak; (B) at peak; (C) after the peak

Figure 5.32: Crack pattern in three–point bending, medium specimen
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(a) (b)

(c) (d)

Figure 5.33: A three–dimensional 5×5×5 cm3 specimen subject to uniaxial extension (parameters

as in Tab. 5.6, g = 3.3 mm, grading curve as in Fig. 5.18, aggregate volume percentage 45%):

(a,b) aggregate structure (black – aggregates, dark gray – interface, light gray – cement matrix);

(b) surface after failure; (c) fracture surface inside
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(a) (b)

(c) (d)

Figure 5.34: A three–dimensional 10×10×10 cm3 specimen subject to uniaxial extension (parame-

ters as in Tab. 5.6, g = 3.3 mm, grading curve as in Fig. 5.18, aggregate volume percentage 45%):

(a) aggregate structure (black – aggregates, dark gray – interface, light gray – cement matrix); (b) ag-

gregate structure and fracture surface (red); (c) surface after failure; (d) fracture surface inside
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Figure 5.35: The size effect for 3D concrete specimens subject to uniaxial extension with sizes 10×
10×10 cm3 and 5×5×5 cm3, aggregate area percentage 45%, d50 = 12 mm, material parameters as

in Table 5.6, grading curve as in Fig. 5.18



Chapter 6

Conclusions and future work

The lattice model is a simple approach to the fracture behavior in heterogeneous quasi–brittle

materials. It is very useful in studying and understanding the phenomenon of the crack for-

mation and crack propagation during uniaxial tension since it can reproduce fracture pro-

cesses observed in real laboratory experiments. Owing to this, novel (stronger and better)

engineering materials can be developed. By using an elastic–purely brittle local fracture law

at the particle level of the material, global softening behavior is obtained. The heteroge-

neous 3D–lattice model for concrete presented in this thesis requires 5 material parameters

(kl , kb, kt , E, εmin) for each phase and 2 (or 4) grid parameters (g, s for Delaunay mesh

generation methos and additionally α and rmax for non–Delaunay mesh generation method)

related to the distribution, quantity and length of beams. The obtained results of crack pat-

terns and stress–strain curves for a three–phase concrete material during uniaxial tension are

qualitatively in agreement with experimental ones for concrete, and compare quite well with

results published in [99, 155, 156]. As well as results in compression, three–point bending,

four–point bending and combined shear–extension test [111].

The material composition has a significant effect on the material behavior, in particu-

lar the particle density and distribution of weak bond zones. The strength and pre–peak

non–linearity decrease with increasing aggregate density and decreasing mean aggregate di-

ameter during uniaxial tension. The material ductility increases when the aggregate density

increases. The vertical strain corresponding to the peak increases with decreasing particle

density. At the low particle content debonding occurs extensively near the isolated aggre-

gates. At the high particle density, percolation of bond zones occurs, and the condition for

macro–crack nucleation and growth occurs. The pre–peak non–linearity cannot be ignored

at low particle density. The macro–crack process occurs before the maximum load. The 3D

simulations increase the material ductility as well.

The simulations of a size effect show a decrease of nominal strength with increasing

specimen size as well as an increase of fracture energy with size. The brittleness in one–

phase material can be decreased by using a non–local approach when calculating strain. If

no bond phase is included, the material strength and material ductility do not depend on the

particle density.

The Poisson’s ratio for compression (ν ≈ 0.22) differs from the Poisson’s ratio in tension

(ν ≈ 0.1).

The Digital Image Correlation is very effective and simple optical technique to deter-

mine the strain field on the surface of concrete with a large accuracy and without any phys-

ical contact. During the experiment, the digital camera must be fixed. Larger pixel subset
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sizes increase accuracy and reduce noise, but also at the same time they blur the boundaries

between regions with different strain.

A strong size effect occurs in experiments with notched concrete beams subject to bend-

ing. The beam ductility and nominal strength increase with decreasing specimen size.

The fracture process zone is created before the peak on the load–deflection diagram is

met. It can occur as a single zone or a pattern of zones at the beginning of deformation.

The width of the fracture process zone increases during deformation and is about 6−7 mm

before the failure. The zone can be almost straight or strongly curved.

The calculations with a lattice model will be continued. The code will be parallelized.

A multiscale model will be used linking the lattice model with the continuum elasto-plastic

model with non-local softening [20,23] wherein the first model will be only restricted to the

damaged part of the structure.



Appendix A

Cellular automaton

Two cellular automaton models were developed by the author of this thesis to calculate the

kinematics of non–cohesive granular materials.

The first model is a simplified cellular automaton which was used to calculate the kine-

matics of non–cohesive granular materials during confined flow in silos. In this model,

granular flow was assumed to be an upward propagation of holes through a lattice com-

posed of cells representing single particles. Calculations were carried out with different silo

shapes and inserts, transition probabilities, migration rules, outflow schemes, grid types, wall

roughness and cell numbers. To visualize the calculation process, horizontal layers of vari-

ous shades were introduced. The simulation results were compared with laboratory tests in

model silos.

The second model is an improved cellular automaton. This model is based on a gas

model of hydrodynamics, where collisions and dissipation of particles were taken into ac-

count during granular flow. The model allows for investigations of dilatant zones in granular

material during silo flow.

The advantages and disadvantages of both cellular automata were outlined.

A.1 Introduction

A cellular automaton is a powerful method to describe, understand and simulate the behav-

ior of complex physical systems, which are difficult to describe using the more traditional

approaches (by means of differential equations). It is viewed as an alternative form of the

microscopic reality, which exhibits the expected macroscopic behavior [34, 165]. The con-

cept dates back to the 1950’s [100, 152]. During the next fifty years of applications, cellu-

lar automata have been considerably improved (e.g. lattice–gas automaton, lattice Boltzman

method [34,165]) and used in many fields of physics, chemistry and biology dealing with the

fluid flow of fluid and gas [34,65]. They have also been used to simulate the behavior of gran-

ular materials during vibration, piling, toppling, segregation, displacement of retaining walls

and rapid flow [4, 5, 31, 34, 51, 52, 64, 67, 70, 85, 88, 89, 91–94, 103, 110, 113, 119, 130–132].

In models, collisions, friction, rotations and particle size have been introduced. Cellular au-

tomata have been used to simulate rapid flow in silos [4,5,31,51,52,88,89,91–94,103,113,

131,132] as above the outlet silo fills behave more like fluids rather than solids (although the

internal friction of the bulk material is still of major importance [150]).

The cellular automata have both advantages and disadvantages relative to other model-
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ing techniques. The advantages include large numbers of particles, lack of restrictions for

deformations, simplicity of implementation and small amounts of computer time needed to

describe the flow. The behavior is described not in terms of differential equations but in

discrete systems. The models provide insight into the main physical features of flow on

microscopic and macroscopic level. The main disadvantage is that the models are purely

kinematic and no flow dynamics is involved.

The objective of simulations presented in this paper was to determine flow patterns of

non–cohesive granular bodies in model silos, with or without inserts, using two different

cellular automaton models. A realistic prognosis of flow patterns of bulk solids is very

important when designing silos [69,120,129,139,146] since loads in silos are directly related

to the flow type. The flow of bulk material stored in silos is of two main patterns: funnel flow

(core flow) and mass flow. In mass flow, the entire material is in motion during discharge. In

funnel flow, movement occurs only in a channel within the stored material, and this channel

is surrounded by non–flowing material.

Two different cellular models were applied using a two–dimensional array of hexagonal

cells, a two–dimensional array of orthogonal cells and a three–dimensional array of cubic

cells.

The first simplified model (Sect. A.2) presented in [88, 89, 131, 132], granular flow was

assumed as an upward propagation of holes through a lattice composed of cells representing

single particles (grains move downwards and voids move upwards).

In the second improved model (Sect. A.4) based on a gas model of hydrodynamics [2,

52, 119], inelastic collisions were taken into account. This model allows investigations of

density zones in granular material during silo flow.

Cellular automata simulations have been carried out with a mass flow and funnel flow

model silo, different silo shapes, migration rules, transport schemes, transition probabilities,

outflow velocities, wall roughness and cell numbers. Comparative calculations have also

been carried out with a three–dimensional grid of square cells. Four different types of inserts

(often used in the silo industry) have mainly been taken into account: a wedge–shaped cone,

an internal hopper, two inclined discharging tubes over the outlet, and a perforated vertical

emptying tube. The theoretical flow patterns were compared with experimental ones.

Additionally, a sandpile and a flow in vertical channel were modelled.

A.2 Description of the simplified model

A simplified cellular automaton requires a lattice of adjacent cells covering a portion of

a N–dimensional space, a set of variables attached to each site of the lattice and giving

the local state of each cell at time t = 0,1,2, . . . and a rule which specifies the variable

evolution in time [34]. Thus, a cellular automaton is a system composed of adjacent cells

(usually organized as a regular hexagonal, triangular or rectangular lattice), which evolves

in a discrete time step. Each cell is characterized by an internal state whose value belongs

to a finite set. These states are updated in parallel according to local rules involving the

neighborhood of each cell.

In the simplified cellular automaton discussed here, granular flow of separate grains in

silos is described as upward propagation and diffusion of holes through the lattice of cells

(grains move downwards and voids move upwards). Each cell may be empty or filled by

a particle of the material. The computation process involves searching through all lattice
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cells for holes. At each time step, a particle flowing downwards due to gravity can move

from one cell to an empty neighboring cell or remain at rest. The filling of one cell causes

the formation of a new empty one, which is again filled with a randomly chosen particle

(Fig. A.1). Thus the migration of holes inside the granular materials occurs. The transition

of holes corresponds to the transport of the material in the opposite direction. The evolution

rule describing the state change can be deterministic or probabilistic. For silo flow, it is

usually assumed to be probabilistic, similarly as in a real bulk solid where the shapes and

dimensions of particles, contact points and forces between particles, and particle roughness

are completely random. The phenomena of collision, friction and rotation have not been

taken into account in the model.

Baxter et al. [4, 5] have simulated a two–

Figure A.1: Example propagation of cells in

the simplified cellular automaton

dimensional deterministic process of filling and

flow of granular material in a hopper using a reg-

ular triangular array of cells. The direction of

grain displacement corresponded to the direc-

tion in which mechanical energy was minimal.

The energy consisted of two components: grav-

ity and interaction between neighboring grains,

including friction, dilatancy and relative orien-

tation of stick–like grains.

Peng and Herrmann [119] investigated density waves during granular flow in a pipe with

an improved cellular automaton. In their model, inelastic collisions of particles were taken

into account (conserving mass and momentum), similarly as in a lattice–gas automaton [65,

68]. Particles could change their velocities during collisions and move during propagation in

the direction of their velocities to neighboring sites. The four material parameters assumed

were related to gravity, dissipation, density and wall roughness.

Savage [131,132] used a simple probabilistic cellular automaton with regular rectangular

cells to describe two–dimensional flow in a hopper. An empty cell could be filled by particles

from 3 cells located in the horizontal layer above. The aspect ratio of cells was changed to

model the internal friction angle of the silo fill. However, too large diffusion of particles was

observed in the calculations. In a similar two–dimensional cellular model by Osinov [113]

with a square grid of cells, an empty cell could be filled by particles from 3 cells (one

above, the others at the sides). The transition probabilities and dimensions of cells were the

governing parameters affecting the hopper flow process. In addition, the simulations took

into account loosening of the material (flowing particles could generate their copies). In all

the above mentioned simulations of silo flow [4, 5, 51, 52, 88, 89, 91–94, 103, 113, 131, 132],

agreement with laboratory tests was surprisingly good in spite of the extreme simplicity of

cellular automata models neglecting the dynamics of the granular flow process.

A.3 Simulation results for the simplified model

As compared with the calculations of silo flow with a similar simplified cellular automa-

ton [113, 131, 132], other migration rules and transition probabilities were tested and differ-

ent types of cell grids were compared. The calculations were also carried out with transition

probabilities dependent on cell location to simulate walls of varied roughness. Moreover,

various outflow velocities were simulated.
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Rule A

H

P1 P2 P3

Rule B

H

P1 P2 P3 P4 P5

Rule C

HP1

P2

P3

Rule D

HP1

P2 P3 P4

P5

Figure A.2: Migration rules assumed for a two-dimensional array of quadratic cells (H - void)

The simulations were carried out with various:

• silo shapes,

• particle numbers,

• migration rules,

• transition probabilities,

• transport schemes,

• outlet velocities,

• wall roughness,

• lattice grids, and

• silo inserts.

Four different migration rules were investigated using a quadratic grid of cells (Fig. A.2).

In the first and second case (rule A and B), each empty quadratic cell could be filled by

particles from 3 or 5 cells located in the horizontal layer above. In the third case (rule C),

each empty cell could be filled by particles from 3 cells located above and at the sides. In the

fourth case (rule D), each empty cell was filled by particles from 5 cells located above and

at the sides. The probability of hole transport from one cell to another was assumed to be pi

(∑ pi = 1) and did not depend on coordinates.

To take into account the effect of the transport scheme, the so–called ’disturbed’ flow

was taken into account. In this case, the motion of empty cells (without particles) was also

considered during flow. They propagated similarly to filled cells (containing particles). To

capture material loosening (dilatancy), each particle passing through a certain number of

cells (e.g. 100) was assumed to generate its copy in a hole to be filled [113]. Thus, the

material’s volume could grew during flow.

To simulate outflow with a constant outlet velocity, the filled cells were not emptied every

calculation step but e.g. every 5 steps.

To model very rough walls, different transition probabilities were assumed in the wall

region compared to the remaining region.

The calculations were performed with a square and hexagonal grid of cells. Hexagonal

cells are usually used to simulate a Navier-Stokes equation of fluid flow [34]. They are

preferable because of isotropy of the momentum advection tensor.

Effect of migration rules and transition probabilities

To find the most realistic migration rule for granular flow in silos, simulation results were

compared with results of simple laboratory model tests carried out with a mass flow silo and

a funnel flow silo (without inserts) made of perspex. The dimensions of the mass flow silo

were: 0.28 m (height) by 0.09 m (width) by 0.07 m (length). The wall inclination of the
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Figure A.3: The geometry of silo used in tests

hopper against the bottom was 70◦. The dimensions of the funnel flow silo were: 0.17 m

(height) by 0.15 m (width) by 0.07 m (length). The wall inclination of the hopper was 30◦.

The silos contained dry sand with a mean grain diameter of 0.5 mm (Fig. A.3). The outflow

was due to gravitation. The experimental flow patterns during mass and funnel flow are

shown in Fig. A.4.

The effects of the migration rules and transition probabilities are shown in Figs. A.5–

A.12 for the mass flow silo and the funnel flow silo using 50 000 cells (Fig. A.4 b). The

dimensions of the cells were 1× 1 mm2. In addition, diagrams are attached indicating the

amount of particles moving through each cell (darker regions denote greater numbers of

flowing particles). The distribution of the transition probability values near each void was

assumed to be symmetric. The maximum values of pi were assumed in the middle or at

sides of cells. The following random probabilistic values were used (∑ pi = 1): p1 = 0.45,

p2 = 0.1, p3 = 0.45 and p1 = 0.15, p2 = 0.7, p3 = 0.15 (rules A and C of Fig. A.2), p1 = 0.3,

p2 = 0.15, p3 = 0.1, p4 = 0.15, p5 = 0.3 and p1 = 0.05, p2 = 0.2, p3 = 0.5, p4 = 0.2,

p5 = 0.05 (rules B and D of Fig. A.2). To visualize the simulation process, horizontal layers

of various shades were introduced.

The results show that the effect of the migration rule on flow patterns is pronounced

(Figs. A.5–A.12). The angle of repose of the granular material is the smallest for the mi-

gration rule C when the greatest probability values are at the sides of the row of cells above

the void (Figs. A.7 a and A.11 a), and the largest for the migration rule D when the great-

est probability values are in the middle (Figs. A.8 b and A.12 b). In general, the angle of

repose increases when the probability values increase towards the mid–point. A satisfac-

tory agreement of flow patterns with experimental results (for both flow types) occurs in the

simulations with migration rule B and transition probabilities decreasing towards the mid–

point (Figs. A.6 a and A.10 a). To obtain an improved agreement, the transition probabilities

should be calibrated better.

The flow rate evolution during silo discharge is shown in Fig. A.13 for the migration

rule B. The mean flow rate is expressed by the overall number of cells going out of the silo

outlet per iteration. At the beginning of discharge, a constant flow rate is observed throughout

the run during both types of flow, in accordance with physical experiments [69, 139]. In
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(a) (b)

Figure A.4: Flow patterns observed in model silo tests: (a) mass flow; (b) funnel flow

(a) (b)

Figure A.5: Flow patterns and distribution of flow rate during granular flow in a mass flow silo

(migration rule A of Fig. A.2, 50 000 cells): (a) p1 = p3 = 0.45, p2 = 0.1; (b) p1 = p3 = 0.15,

p2 = 0.7

the final phase of funnel flow, a non–linear reduction of the flow rate is obtained due to a

successive decrease of the material volume in the silo. In the case of mass flow, a drastic

reduction of the flow rate takes place.

The calculation time for a silo flow with 50000 cells using a 2.0GHz PC was about 2

minutes.

Effect of the transport scheme

Figure A.14 shows the results during ,,disturbed” silo flow. Taking the flow of empty cells

into account does not significantly influence the flow pattern. However, the material flows

out more slowly.



A.3. SIMULATION RESULTS FOR THE SIMPLIFIED MODEL 113

(a) (b)

Figure A.6: Flow patterns and distribution of flow rate during granular flow in a mass flow silo

(migration rule B of Fig. A.2, 50 000 cells): (a) p1 = p5 = 0.3, p2 = p4 = 0.15, p3 = 0.1; (b)

p1 = p5 = 0.05, p2 = p4 = 0.2, p3 = 0.5

(a) (b)

Figure A.7: Flow patterns and distribution of flow rate during granular flow in a mass flow silo

(migration rule C of Fig. A.2, 50 000 cells): (a) p1 = p3 = 0.45, p2 = 0.1; (b) p1 = p3 = 0.15,

p2 = 0.7

(a) (b)

Figure A.8: Flow patterns and distribution of flow rate during granular flow in a mass flow silo

(migration rule D of Fig. A.2, 50 000 cells): (a) p1 = p5 = 0.3, p2 = p4 = 0.15, p3 = 0.1; (b)

p1 = p5 = 0.05, p2 = p4 = 0.2, p3 = 0.5
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(a) (b)

Figure A.9: Flow patterns and distribution of flow rate during granular flow in a funnel flow silo

(migration rule A of Fig. A.2, 50 000 cells): (a) p1 = p3 = 0.45, p2 = 0.1; (b) p1 = p3 = 0.15,

p2 = 0.7

(a) (b)

Figure A.10: Flow patterns and distribution of flow rate during granular flow in a funnel flow silo

(migration rule B of Fig. A.2, 50 000 cells): (a) p1 = p5 = 0.3, p2 = p4 = 0.15, p3 = 0.1; (b)

p1 = p5 = 0.05, p2 = p4 = 0.2, p3 = 0.5

(a) (b)

Figure A.11: Flow patterns and distribution of flow rate during granular flow in a funnel flow silo

(migration rule C of Fig. A.2, 50 000 cells): (a) p1 = p3 = 0.45, p2 = 0.1; (b) p1 = p3 = 0.15,

p2 = 0.7

(a) (b)

Figure A.12: Flow patterns and distribution of flow rate during granular flow in a funnel flow silo

(migration rule D of Fig. A.2, 50 000 cells): (a) p1 = p5 = 0.3, p2 = p4 = 0.15, p3 = 0.1; (b)

p1 = p5 = 0.05, p2 = p4 = 0.2, p3 = 0.5
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Figure A.13: Calculated flow rate during granular flow in (a) mass and (b) funnel flow silos (migration

rule B of Fig. A.2, p1 = p5 = 0.3, p2 = p4 = 0.15, p3 = 0.1)

Effect of outlet velocity

In Fig. A.15 results of silo flow with a constant outlet velocity are shown. The reduction in

the outflow velocity diminishes the flow rate in the entire silo. The flow rate becomes more

uniform, while the angle of repose of the granular material increases during mass flow and

decreases during funnel flow.

Effect of wall roughness

The effect of increased wall roughness is presented in Fig. A.16. In this case, a different

migration scheme was assumed in the wall region at the distance of 10 mm from the silo

walls. The transition probability for flow was assumed to decrease there in accordance with

a cosine function. The bulk material flows out more slowly. At the walls, there appears a

narrow wall shear zone.

Effect of particle numbers

The effect of the number of cells during funnel flow silo is shown in Fig. A.17. The calcula-

tions were performed with 200 000 cells. The dimensions of cells were 0.5× 0.5 mm2. An

increase in the number of cells causes an increase of the granulate’s angle of repose.

Effect of three–dimensional simulation

Three–dimensional calculations of flow patterns in the mass and funnel flow silo of Fig. A.4

were carried out with 3 500 000 cells by assuming the migration rule B of Fig. A.2 in both

horizontal directions along the cross–section (Fig. A.18 a), with ∑ pi = 1. Figures A.18 b

and A.18 c demonstrate the flow pattern in different horizontal sections. The results are

similar to those of two–dimensional calculations (due to the lack of wall friction). The

calculation time using a 2.0GHz PC was about 2.5 hours.
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(a) (b)

Figure A.14: Flow patterns and distribution of flow rate during granular disturbed flow in a mass (a)

and funnel (b) flow silo (migration rule B of Fig. A.2, p1 = p5 = 0.3, p2 = p4 = 0.15, p3 = 0.1, 50

000 cells)

(a) (b)

Figure A.15: Flow patterns and distribution of flow rate during granular flow with a constant (con-

trolled) outflow velocity in a (a) mass and (b) funnel flow silo (migration rule B of Fig. A.2,

p1 = p5 = 0.3, p2 = p4 = 0.15, p3 = 0.1, 50 000 cells)

(a) (b)

Figure A.16: Flow patterns during granular flow with rough walls in a (a) mass and (b) funnel flow

silo (migration rule B of Fig. A.2, p1 = p5 = 0.3, p2 = p4 = 0.15, p3 = 0.1, 50 000 cells)
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Figure A.17: Flow patterns and distribution of flow rate during granular flow in a funnel flow silo

(migration rule B of Fig. A.2, p1 = p5 = 0.3, p2 = p4 = 0.15, p3 = 0.1, 200 000 cells)

Effect of the lattice type

The effect of the lattice type is shown in Figs. A.19 and A.20. The calculations were carried

out with a hexagonal grid and the migration rule of Fig. A.19 a for two different distributions

of transition probability values (smaller at the sides and greater above the void or inversely).

The agreement of results of the flow pattern is also satisfactory when compared with ex-

periments (Fig. A.4). In the case of a hexagonal grid, the angle of repose decreases when

transition probabilities are the greatest at the sides and increases when they are the smallest

there (with respect to a quadratic grid).

Effect of silo inserts

Silo inserts are used to improve the flow properties of bulk solids and to decrease silo wall

pressures [69, 120, 129]. A wedge–shaped insert and an internal hopper change funnel flow

into mass flow [61, 82, 147], while a perforated emptying tube [84, 128] or two inclined

emptying tubes [83] change mass flow into funnel flow. When a wedge–shaped insert is

located near the transition between the bin and the hopper, a significant reduction in pressures

on the wall hopper is obtained [61]. An insert in the form of an internal hopper inside the

main hopper (the cone–in–cone concept) is applied to obtain mass flow at considerably large

hopper inclinations at which funnel flow occurs [61, 82]. The outlet of the internal hopper

is usually equal to the outlet of the main hopper. The flow pattern is affected mainly by the

wall inclination of the internal hopper and the horizontal distance between the main and the

internal hopper [61]. The perforated emptying tube (also called a depression column or an

anti–dynamic tube) is hanged in the middle of the silo or along the wall [84,129]. It is usually

made of steel and is connected to a silo’s roof structure. It works only for non–cohesive

materials. At the same time, two inclined discharging tubes are located symmetrically on the

bin bottom [83]. Thanks to inserts of both of these types, a significant reduction of wall loads,

flow rate and amplitude of dynamic pulsations is obtained due to the occurrence of funnel

flow. In the case of too high pressures in silos, the method is cheaper than strengthening the

silo structure with high–strength steel cables.

The calculations were carried out with a symmetric wedge–shaped insert located at two

different heights of a funnel flow silo. During the analysis, 200 000 quadratic cells with the

migration rule B of Fig. A.2 were used. The distribution of probability values was assumed

to be symmetric with the largest values at both ends, diminishing towards the center of the

layer above the void (p1 = p5 = 0.3, p2 = p4 = 0.15, p3 = 0.1). Figure A.21 demonstrates
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(a)

(b) (c)

Figure A.18: Migration rule (a) and flow patterns during three-dimensional granular flow in a (b)

funnel and (c) mass flow silo using quadratic cells (p11 = p15 = p55 = p51 = 0.060, p12 = p21 = p14 =
p25 = p41 = p45 = p54 = p52 = 0.053, p13 = p31 = p53 = p35 = 0.045, p22 = p42 = p44 = p24 = 0.023,

p23 = p32 = p43 = p34 = 0.015, p33 = 0.003, 3 500 000 cells)

the flow patterns and distribution of flow rate during granular flow in a silo with a wedge–

shaped insert. The presence of the insert, its size and position influence significantly the flow

pattern and rate. Mass flow is obtained for the insert’s position of Fig. A.21 c.

The results for an internal hopper located at the transition between the bin and the main

hopper are presented in Fig. A.22. During this analysis, 200 000 quadratic cells were used

(migration rule B of Fig. A.2). Two different wall inclinations of the internal hopper were

assumed (Figs. A.22 b and A.22 c). The flow in a silo without the internal hopper is of

the funnel type (Fig. A.22 a). The application of an internal hopper induces mass flow

(Figs. A.22 b and A.22 c), in accordance with experiments [61]. However, if the wall incli-

nation of the internal hopper to the bottom is too small, the material flows too slowly in the

center (Fig. A.22 c).

Figure A.23 presents the calculated flow patterns in silos including two inclined tubes

above the outlet and a perforated tube in the middle of the silo (200 000 quadratic cells,

migration rule B of Fig. A.2). As the simulation results indicate, these two inserts promote

funnel flow.
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Figure A.19: Migration rule (a), flow patterns and distribution of flow rate during granular flow in a

mass flow silo (two-dimensional hexagonal grid): (b) p1 = p4 = 0.1, p2 = p3 = 0.4 (c) p1 = p4 = 0.4,

p2 = p3 = 0.1;

(a)

(b)

Figure A.20: Flow patterns and distribution of flow rate during granular flow in a funnel flow silo

(two-dimensional hexagonal grid): (a) p1 = p4 = 0.4, p2 = p3 = 0.1; (b) p1 = p4 = 0.1, p2 = p3 = 0.4
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(a)

(b)

(c)

Figure A.21: Flow patterns and distribution of flow rate during granular flow in a silo without and

with inserts (quadratic cells, migration rule B of Fig. A.2): (a) silo without insert, (b) and (c) silo with

insert (p1 = p5 = 0.30, p2 = p4 = 0.15, p3 = 0.1)

(a)

(b)

(c)

Figure A.22: Flow patterns and distribution of flow rate during granular flow in a silo without an

internal hopper (a) and with an internal hopper (b), (c) (quadratic cells, migration rule B of Fig. A.2,

p1 = p5 = 0.30, p2 = p4 = 0.15, p3 = 0.1)
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(a)

(b)

Figure A.23: Flow patterns and distribution of flow rate during granular flow in a silo with two

inclined tubes (a) and with a perforated tube (b) (quadratic cells, migration rule B of Fig. A.2, p1 =
p5 = 0.30, p2 = p4 = 0.15, p3 = 0.1)
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A.4 Description of the improved model

In a cellular automaton based on a lattice gas automaton [2, 119], some mechanical princi-

ples were taken into account. The model has enabled us to investigate propagating dilatant

zones, which are an inherent characteristics of each discharge process in mass and funnel

flow hoppers and parallel–converging bins during gravitational and controlled outflow of

dense granular material composed of rough grains [4, 5, 24, 44, 56, 105, 106, 149]. In this

mechanical model, each site of a hexagonal lattice could be occupied by one or more parti-

cles, a boundary wall or empty. The particles moved on the nearest–neighbor bonds (with

unit velocity) and the second–nearest neighbors of the lattice (with unit velocity multiplied

by the factor
√

3). Each particle at each site had 13 Boolean states which were related to

velocity vectors vi (i = 0,1,2, . . .,12, see Fig. A.24 a). The direction of motion of a particle,

v, could be toward any of its 12 nearest neighbors (i = 1,2, . . . ,12) or the particle could be

at rest (v0 = 0). Thus, at the beginning of our calculations, the number of particles per site

had a maximum value of 13 and a minimal value of 0 (an empty site). The time evolution

consisted of one collision step and two propagation steps. In the collision step, both particles

changed their velocities or remained at rest at the site by losing their total kinetic energy due

to dissipation. In the first propagation step, particles (more than one) with no velocity were

scattered randomly to the nearest empty sites with low numbers of particles. In the second

propagation step, colliding particles (after changing their velocities) were transferred in the

direction of their velocities to the nearest sites, where they collided again (see Fig. A.24 b,c).

In general, collisions conserved mass and momentum. The simulations have shown that the

calculation order of the lattice sites has no influence on the results. The following six param-

eters were assumed in the model: two collision parameters (p,q), two friction parameters

(b,k) and two gravity parameters (g,h). All probabilistic parameters were in the range from

0 to 1.

The collision parameter p determined the number of particles, n, which remained at

rest after a collision (due to energy dissipation). The n parameter was calculated from the

following formula: p(n+1) < r < pn, where r is a random number. As some particles were

stopped after collisions, other particles could leave the sites at higher velocities, due to the

conservation of momentum. When more than one particle was stopped and momentum could

not be conserved, particles moved in random directions.

The q parameter described the loss of energy during each collision. The number of
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(a) (b) (c)

Figure A.24: Vectors of particle velocities at each site (a). Example collision: velocity vectors of

particles (b) before, and (c) after collision (V – resultant velocity)
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a
�

��	

Figure A.25: Example traces of single particles in the gravity field thrown from the same point in the

direction of v7 of Fig. A.24 a compared to a parabolic trajectory (a — parabolic trajectory)

random particles, l, (which were not considered when calculating the resultant velocity) was

obtained from the following formula: q(l+1) < r < q l . Due to the loss of energy, particles

left sites with lower velocities.

The total number of possible combinations for collisions was equal to 212 = 4096 and

the number of possible velocity directions was 108. To accelerate the calculation process, an

appropriate table of collisions was generated (Fig. A.26). If parameters p and q were equal to

zero, the sum of velocity vectors outgoing from each site was equal to the sum of incoming

velocity vectors (elastic collisions took place).

The friction parameter b described wall roughness. It was introduced in two ways.

The first way was based on the model proposed in [119]. If parameter b was other than

zero (rough walls), particles bounced back from the wall in random directions. If b = 0

(smooth walls), the angle at which particles hit the wall was equal to the angle at which they

were reflected.

In the second, particles hitting the wall were stopped there with a probability of b (the

increase in wall roughness corresponded to the increase in parameter b). Afterwards, they

were scattered randomly to the nearest empty sites with low contents of particles.

The friction parameter k described the internal interaction among particles. When pa-

rameter k was other than zero, certain migration directions could become more dominant

(to induce movement in one specific direction). In our simulations, the horizontal direction

was assumed to be dominant. Thus, the resulting velocity vector of outgoing particles was

replaced by the sum of random velocity vectors in the directions v2,v3,v5,v6,v8, and v11

(Fig. A.24 a) with a probability of k.

The gravity parameter g was taken into account during each collision by adding the ver-

tical velocity, v4, (Fig. A.24 a) to the resultant velocity vector of outgoing particles with a

probability of g. Thus, the particles were accelerated downwards after each collision. At the

same time, the gravity parameter h was introduced to improve the direction of the resultant

velocity vector so that the direction would become parabolic for single particles (Fig. A.25).

The particle remaining at rest at a given site (v0) could move downwards to the v0 state in the

neighboring empty site with no velocity only in one of the chosen directions v3,v4,v5,v9 and

v10 (Fig. A.24 a). If h = 1, particles without velocities moved downwards (density became

more uniform). However, if h = 0, particles without velocities did not move.

The initial density of the granulate at the onset of flow dependent on parameters p,q,g
and k was generated during silo filling when the outlet was closed. Having settled in the silo,

the granular material reached certain density, which increased with increasing p and g and

decreasing q and k.
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Figure A.26: Examples of collision rules for 4 particles flowing to one random site (arrows represent

the directions of moving particles and full dots stand for particles)
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Figure A.27: Flow pattern in a mass flow silo: p = 0.2, q = 0.2, b = 0.05, k = 0.05, g = 0.2, h = 0.05

(a) (b)

Figure A.28: Flow pattern in a mass flow silo: (a) p = 0.2, q = 0.2, b = 0.05, k = 0.05, g = 0.95, h =
0.05 (b) p = 0.2, q = 0.2, b = 0.05, k = 0.05, g = 0.05, h = 0.05

As mentioned above, the model is based on the approach proposed in [2, 119]. The

following novelties were introduced: the number of possible vector directions was enhanced

(13 instead of 7), density was not used as an additional parameter (density was determined

by other parameters), gravitation was described by two parameters, rough walls were able

to stop flowing particles, the method of describing collisions allowed to stop any number

of particles, and a new parameter was introduced to describe the internal interaction among

particles.

A.5 Simulation results for improved model

2D–results of simulations are shown in Figs. A.27–A.33 (mass flow silo) and Figs. A.34–

A.40 (funnel flow silo). The shape and dimensions of the silos were similar to those of the

laboratory tests described in Sect. A.2 (also in [88,95]). The number of cells was 35 000. The

effect of parameters g,h,k,b, p and q is shown in Figs. A.28 and A.35, Figs. A.29 and A.36,

Figs. A.30 and A.37, Figs. A.31 and A.38, Figs. A.32 and A.39, and Figs. A.33 and A.40,

respectively for the mass and the funnel flow silos. The darker regions are associated with

higher densities, while the lighter regions are associated with lower densities. In the calcula-

tions with parameter b, describing wall roughness, the second method was applied (the first,

in contrast to results in a vertical pipe [5], did not affect the results in a silo). Initially, the

values of parameters (Figs. A.27 and A.34) were assumed to be random. Then, small and

great parameter values were chosen for a comparison (Figs. A.28–A.33 and A.35–A.40).
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(a) (b)

Figure A.29: Flow pattern in a mass flow silo: (a) p = 0.2, q = 0.2, b = 0.05, k = 0.05, g = 0.2, h =
0.8 (b) p = 0.2, q = 0.2, b = 0.05, k = 0.05, g = 0.2, h = 0.0

(a) (b)

Figure A.30: Flow pattern in a mass flow silo: (a) p = 0.2, q = 0.2, b = 0.05, k = 0.8, g = 0.2, h =
0.05 (b) p = 0.2, q = 0.2, b = 0.05, k = 0.0, g = 0.2, h = 0.05

(a) (b)

Figure A.31: Flow pattern in a mass flow silo: (a) p = 0.2, q = 0.2, b = 0.8, k = 0.05, g = 0.2, h =
0.05 (b) p = 0.2, q = 0.2, b = 0.0, k = 0.05, g = 0.2, h = 0.05
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(a) (b)

Figure A.32: Flow pattern in a mass flow silo: (a) p = 0.8, q = 0.2, b = 0.05, k = 0.05, g = 0.2, h =
0.05 (b) p = 0.0, q = 0.2, b = 0.05, k = 0.05, g = 0.2, h = 0.05

(a) (b)

Figure A.33: Flow pattern in a mass flow silo: (a) p = 0.2, q = 0.8, b = 0.05, k = 0.05, g = 0.2, h =
0.05 (b) p = 0.2, q = 0.0, b = 0.05, k = 0.05, g = 0.2, h = 0.05

Figure A.34: Flow pattern in a funnel flow silo: p = 0.2, q = 0.2, b = 0.05, k = 0.05, g = 0.2, h =
0.05

(a) (b)

Figure A.35: Flow pattern in a funnel flow silo: (a) p = 0.2, q = 0.2, b = 0.05, k = 0.05, g =
0.95, h = 0.05 (b) p = 0.2, q = 0.2, b = 0.05, k = 0.05, g = 0.05, h = 0.05
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(a) (b)

Figure A.36: Flow pattern in a funnel flow silo: (a) p = 0.2, q = 0.2, b = 0.05, k = 0.05, g = 0.2, h =
0.8 (b) p = 0.2, q = 0.2, b = 0.05, k = 0.05, g = 0.2, h = 0.0

(a) (b)

Figure A.37: Flow pattern in a funnel flow silo: (a) p = 0.2, q = 0.2, b = 0.05, k = 0.8, g = 0.2, h =
0.05 (b) p = 0.2, q = 0.2, b = 0.05, k = 0.0, g = 0.2, h = 0.05

(a) (b)

Figure A.38: Flow pattern in a funnel flow silo: (a) p = 0.2, q = 0.2, b = 0.8, k = 0.05, g = 0.2, h =
0.05 (b) p = 0.2, q = 0.2, b = 0.0, k = 0.05, g = 0.2, h = 0.05

(a) (b)

Figure A.39: Flow pattern in a funnel flow silo: (a) p = 0.8, q = 0.2, b = 0.05, k = 0.05, g = 0.2, h =
0.05 (b) p = 0.0, q = 0.2, b = 0.05, k = 0.05, g = 0.2, h = 0.05

(a) (b)

Figure A.40: Flow pattern in a funnel flow silo: (a) p = 0.2, q = 0.8, b = 0.05, k = 0.05, g = 0.2, h =
0.05 (b) p = 0.2, q = 0.0, b = 0.05, k = 0.05, g = 0.2, h = 0.05
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Figure A.41: Formation of a granular pile

In all cases, regions of various density occur during granular flow. The shape of dilatant

zones is similar for both flow types and is strongly influenced by the collision parameter

p and the gravity parameter h. In the mass flow silo, it is also dependent upon the wall

roughness parameter b (more particles are stopped at the wall region with increasing wall

roughness). With the decreasing collision parameter p, the height of dilatant zones increases

significantly (the material behaves more like gas). If the gravity parameter h is great, the

dilatant zones become narrower and more concentrated in the middle region of the silo due

to more empty sites appearing in the middle of the silo than in the region close to its walls.

For smaller wall roughness parameters b, the dilatant zones are more horizontal (in the mass

flow silo) since the presence of walls disturbs less flow. The outflow rate obviously increases

with the increasing gravity parameter g. With an increase of the gravity parameter g, the

effect of other factors becomes insignificant. The inclination of the upper free surface of the

material decreases with decreasing parameters p,q and h (the material then behaves more

like gas). The non–uniformity of the material’s density increases with increasing parameter

g and decreasing parameters h,k, p and q.

Although the calculated flow patterns in silos are in satisfactory agreement with the ex-

perimental ones [95] (especially for the mass flow silo), the calculated shapes of the prop-

agating dilatant zones in the flowing material differ from the experimental ones due to pure

shearing of the granular material having been neglected. In the experiment with a mass flow

silo [105, 106], a symmetrical pair of curvilinear dilatant rupture zones was created in the

neighborhood of the outlet. The zones propagated upwards, crossed each other around the

symmetry of the silo, reached the walls and were subsequently reflected from them. This

process was repeated until the zones reached the free boundary in the converging hopper or
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Figure A.42: Evolution of density waves during granular flow in a vertical channel

the transition zone in the parallel–converging silo. In the funnel flow silo [4,5], the curvilin-

ear dilatant zones in the material core were symmetric about a vertical mid–line. Some of

them crossed each other.

The 2D-results of simulations of a granular pile including 15000 cells (particles) are

demonstrated in Fig. A.41. The material parameters were assumed as in Fig. A.27. During

the simulation, the particles were slowly added at a fixed rate from the top of the system to

the bottom. Gravity moved these particles down until they collided with a rigid wall at the

bottom. The profile of the created heap is similar to a cone with a well defined angle of repose

equal to 30◦ (determined by the geometry of the underlying lattice). As compared to a perfect

cone, it shows the presence of small kinks along the surface and a slightly curved tail (with

a slope inclination smaller than 30◦) what is in accordance with experimental results [2].

The time evolution of the density in a vertical channel during 2D-results of simulations

with 35000 cells is demonstrated in Fig. A.42. Periodic boundary conditions were used in

the vertical direction. The darker regions are associated with the higher densities, and the

lighter regions are associated with the lower densities of the silo fill. Initially, the density is

overall non-homogeneous. During continuous flow, gradually layers of high and low density

are being formed out of the system. The layers create permanent density waves. The shape

of density waves is in accordance with experiments [37]. The density waves do not appear

during granular flow if the collisions parameters and the wall roughness parameter are equal

to zero.

A.6 Conclusions

Although cellular automata are purely kinematic models and simplify the behavior of gran-

ular materials, they can capture realistically flow patterns of granulates in silos on the basis

of back analysis of laboratory experiments.

The improved cellular automaton, has been able to describe the propagation of dilatant

zones in granular material during silo flow. Their shape was affected by gravity, collision

and friction parameters. The flow dynamics was taken into account, and collision energy
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was conserved. However, the results were different than that obtained in experiments.

The simplified cellular automata model is purely kinematic wherein flow dynamics is not

taken into account. Although it is a gross oversimplification of real granular materials, it is

capable of describing consistently the flow patterns of granulates in silos with and without

inserts. The main parameters governing the motion of granular particles in silos in the sim-

plified cellular automaton discussed here have been migration rules, transition probabilities,

grid type and number of cells. The migration rules assuming a decrease of transition prob-

ability values towards the mid–point of cells above the void have been able to capture the

angle of repose of the bulk solid. This automaton can be used to approximately and quickly

determine the flow patterns of non-cohesive bulk materials in silos in the phase of the silo

design.
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Appendix B

Discrete Element Method in the

simulation framework

The author of this thesis in cooperation with University Joseph–Fourier in Grenoble1 has

took part in a larger project which aims at developing a versatile framework for numerical

simulations.

B.1 Introduction

When developing the simulation software the scientists have to often focus on marginal

problems (not related to their scientific work), like: program interface, input/output of data,

geometry handling, mesh generation or visualization of results. One solution is to use the

existing common scientific frameworks with own calculation algorithms (eg. Abaqus, Dyna,

Adina, Pfc3d). However those frameworks rarely give possibility of modelling together

FEM and DEM. In such case the user has to overcome the obstacles presented by the flawed

software [19]. A common solution here is to write the own software to perform simulations.

The proposed solution is to provide a stable and uniform environment for scientists to

implement computational algorithms. Therefore they can focus on the work instead of rein-

venting the wheel of input/output or display. The YADE framework is divided into several

layers shown on Fig. B.1. Each layer can depend on layers below it. Libraries in lower layers

are not related to simulation itself, and can be utilized by other software.

The YADE common layer on Fig. B.1 contains components usually used by simula-

tion: concept of force, momentum or displacement, Newton’s law, time integration algo-

rithms (leapfrog [63], Newmark, Runge–Kutta 4, etc.), damping methods (Cundall non vis-

cous damping), collision detection algorithms (eg. Sweep and Prune [35]), boundary con-

ditions (imposing translation, applying gravity, etc.), classes that store information about

bodies or interactions, and common OpenGL methods for drawing popular geometries.

Specialized layer is based on the common layer. Many specialized packages can ex-

ist: Discrete Element Method, Finite Element Method or Lattice Geometrical Model.

1Le laboratoire Sols, Solides et Structures; F. Donzé research team
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Figure B.1: Layered structure of YADE framework.

B.2 The YADE framework: DEM and other models

The Intention of the YADE design is to allow an easy adding of new simulation models

and reuse already defined algorithms. Examples in subsections below describe what had to

be implemented in specialized layers to perform simulations with DEM, FEM and Lattice

Geometrical Model.

Discrete Element Method

To test the flexibility of YADE framework, the SDEC (Sect. 2.1) algorithms were first im-

plemented. In DEM the contact is described by radiuses of two spheres: r1, r2, penetration

depth d and the normal of the contact plane ~n. To allow interaction between the sphere and

a non–spherical object an imaginary mirror sphere of double radius is created (as proposed

by Donzé [54]). Following this definition a new class SpheresContactGeometry was added

(see Fig. B.11). Then two different EngineUnit-s with algorithms for building this contact

description were added to MetaEngine: one to build from contact between two spheres an-

other to build from contact between a sphere and a box (analogous engine units that build

bounding volume are shown on Fig. B.15). This contact description can be used only when

at least one object in contact is a sphere.

The class describing InteractionPhysics was added with the name ElasticContactPhysics

which contains information about the contact: normal stiffness, shear stiffness and friction

angle (see Fig. B.11). When contact occurs, this information is calculated by dedicated En-

gineUnit that calculates macro–micro relationship according to formula proposed by Donzé

in [54].

The criterion for destroying interactions in DEM is physical, thus persistentInteractions

were used, and a class CoulombMohrCriterion was added to control when the contact is lost

(see Sect. 2.1, Fig. 2.4). Adding other criterions as plug–ins poses no difficulty for the user.

To solve interactions a class ElasticContactLaw deriving from Engine was added, which

contains DEM formulation inside (see Sect. 2.1, Eq. 2.2).
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Figure B.2: Distribution of forces in a two dimensional DEM sample subject to biaxial compression,

results obtained in YADE’s DEM implementation.

Finally a simulation loop (see simulationLoop on Fig. B.13) for DEM calculation was built:

• Calculating time step with elastic criterion,

• building a bounding volume (the BoundingVolume is shown on Fig. B.8) using a

MetaEngine as shown on Fig. B.15,

• performing collision detection with Sweep and Prune collider using the previously

calculated bounding volumes,

• building interaction geometry and physics (the classes SpheresContactGeometry and

ElasticContactPhysics shown on Fig. B.11 are built using a 2D MetaEngine analo-

gously to Fig. B.15),

• solving interactions with DEM formulation (the class ElasticContactLaw contains the

Eq. 2.2 from Sect. 2.1),

• applying the calculated response to the bodies by first calculating their new accel-

eration (using classes NewtonsForceLaw and NewtonsMomentumLaw which contain

Eq. 2.1 for acceleration and angular acceleration respectively),

• and performing the time integration of bodies according to their new acceleration

(eg. using a leapfrog or Runge–Kutta 4 integration method).

This loop repeats until the calculation is terminated, and it directly implements DEM as

described in Sect. 2.1.

Figures B.2–B.4 show several example simulations done using the YADE framework.

The biaxial compression in two dimensions shown on Fig. B.2 is in good agreement with

results by Cundall [38, 49]. Figure B.3 shows a similar experiment performed in three di-

mensions. The ,,force paths” are clearly visible. Figure B.4 shows a concrete beam subject to

three point bending, the concrete aggregates are using a cohesive law (see Fig. 2.4, Sect. 2.1)

to transfer tensile force.
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(a) (b)

Figure B.3: A three dimensional DEM sample subject to triaxial compression, results obtained in

YADE’s DEM implementation: (a) view on aggregates; (b) distribution of forces

(b)

(a)

Figure B.4: A DEM specimen of concrete (aggregates connected using using cohesive law, Fig. 2.4

from Sect. 2.1), subject to three point bending: (a) specimen’s configuration; (b) forces in bonds

between aggregates (red: compression, blue: tension)
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Finite Element Method

To test capabilities of the YADE framework

Figure B.5: A FEM beam, using a tetrahe-

dron as an element, subject to uniaxial ex-

tension as calculated in YADE

with respect to the Finite Element Method, a sim-

ple tetrahedron FEM element was implemented.

Its results were compared with the same problem

solved in matlab to verify the model. Further step

is to couple FEM with DEM.

In current implementation one FEM entity is

one MetaBody. Each node is a Body and each

FEM element is a multi–body Interaction. In the

case of tetrahedron element it is a four–body interaction, rather than an element by itself.

One might argue that FEM tetrahedron is really an interaction, because it contains a Ke

stiffness matrix just like a spring interaction or elastic contact interaction contain a stiffness

property (compare with Fig. B.11). Majority however believes that it’s not an interaction but

an element. The author assertively believes that there is no definite answer in this subject aka

chicken and egg problem. Consequently this interesting turn of events means that in future

YADE refactoring a new kind of object will be added, which will be an element composed

of several bodies. In this way a composite element (like four body FEM tetrahedron) will

feel more naturally fitting into the framework.

A class FEMTetrahedronInteraction (compare with Fig. B.11) was added as an inter-

action between four nodes. An EngineUnit was added to calculate Ke stiffness matrix of

tetrahedron. A FEMLaw engine was written with classical explicit FEM formulation.

Finally a simulation loop (see simulationLoop on Fig. B.13) for FEM calculation was built:

• Building a bounding volume as shown on Fig. B.15 for the whole FEM entity,

• calculation of the response on individual nodes using an explicit FEM formulation

by class FEMLaw (produces a PhysicalAction with force for each Body, but does not

apply the force yet),

• add gravity force to each PhysicalAction using a gravity engine,

• applying boundary conditions like translating selected nodes by a certain distance ac-

cording to some velocity, or adding some external force to their PhysicalAction,

• using calculated forces to calculate acceleration, just like in the DEM simulation loop,

• and performing the time integration of bodies according to their new acceleration

(eg. using a leapfrog or Runge–Kutta 4 integration method).

The loop repeats over and over. It should be noted that modular architecture of YADE

framework allows to use the same simulation steps in both DEM and FEM and to easily

replace one with another version that does the same in different manner, eg. replacing Runge–

Kutta 4 integration with Newmark method.

Figure B.5 shows an example simulation performed with FEM implemented in YADE, a

three dimensional beam discretized using tetrahedron element, subject to uniaxial extension.
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Lattice Geometrical Model

Another model implemented in YADE was obviously the lattice model (Chapter 4). Just like

in FEM an ambiguity arises whether a beam should be an interaction between two nodes, or

a composite two–noded element. However since the angular springs are interactions between

two beams the solution to refactor YADE by adding a new composite element type becomes

even more appealing. Currently the beam is a Body in YADE, and it stores among other

properties the id numbers of its two nodes. This means that in a single BodyContainer both

beams and nodes are stored, to distinguish them a group number is used (a cheaper solution

than doing dynamic cast each time).

The necessary data classes were added for a node, a beam and an angular spring between

two beams to store their respective information. Then a new engine LatticeLaw was written

to perform the computations as described in Chapter 4. Finally a simulation loop for the

calculation was built:

• Building a bounding volume for the whole lattice specimen,

• applying some boundary conditions like displacement of selected nodes (using a Deux-

ExMachina displacement engine),

• calculating interactions between beams, namely the current angle and torsion of angu-

lar springs that connect them,

• solving interactions of lattice beams (the class LatticeLaw), by calculating a Physi-

calAction displacement for each node in the model,

• removing the beams according to fracture criterion (using a StandAloneEngine),

• and finally applying the calculated response (stored in PhysicalAction) displacement

to the nodes (notably skipping the Newton’s Law and time integration),

This loop exposes similarities with previous two loops for DEM and FEM with the most

important difference of not using a time integration. This is due to the fact that lattice model

being of geometrical type has quasi static nature and does not depend on time.

Figure B.6 shows an example simulation with a lattice model, a three dimensional con-

crete specimen subject to uniaxial extension. The damage area inside the specimen is de-

noted with red surface. For further details about the lattice model and more results see the

Chapters 4–6. Figure B.7 shows an overall view on YADE’s graphical interface with a three

dimensional specimen, for more details see Chapter 5.

The planned multi–scale modelling using lattice coupled with FEM (or DEM) should

be relatively easy due to fact that all of the necessary models are already implemented in a

single computational framework.

B.3 Software design applied to numerical simulations

Too much generality leads to abstractions where everything tends to fit, and no clear path

is shown for the scientist to follow. On the contrary too strong concepts that structure the

code can limit the diversity of simulation and framework flexibility. A good balance must

be found between abstractions and concrete simulation concepts. To achieve this the data

structures were separated from algorithms operating on them.
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(a) (b) (c)

Figure B.6: A lattice beam model specimen subject to uniaxial extension as calculated in YADE:

(a) the beams that build the specimen; (b) view on specimen’s surface with visible fracture surfaces

inside; (c) the damaged areas inside the specimen

Figure B.7: A view on YADE’s main graphical interface (with a 3D simulation)
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Figure B.8: Class Body, and abstract interface classes contained by it, with examples of concrete

derived classes (from common or specialized layer).

Figure B.9: Examples of concrete classes contained by Body
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Figure B.10: Class Interaction, and abstract interface classes contained by it, with examples of con-

crete derived classes (from specialized layer).

Figure B.11: Examples of concrete classes contained by Interaction

Data classes

Four data classes are distinguished: Body, Interaction, PhysicalAction and MetaBody. Ob-

jects of those classes cannot move or interact themselves, as they contain only data. Their

movement, interaction, etc. are handled by Engine classes.

The class Body contains five abstract class interfaces (Figs. B.8 and B.9). The class

State describes body’s state which evolves during simulation. The class PhysicalParameters

describe various body’s material properties. The class GeometricalModel is the best possi-

ble representation of simulated body’s geometry. The class InteractingGeometry is used to

process interactions between bodies. The class BoundingVolume is used by fast interaction

detection algorithms (eg. SAP [35] or grid based collision detection).

The class Interaction contains two class interfaces (Figs. B.10 and B.11). The class In-

teractionGeometry contains geometrical information describing the interaction. The class

InteractionPhysics describes physical means of interaction (contact shearing angle, interac-

tion stiffness, etc.).

The class PhysicalAction (Fig. B.12) conveys modification of body’s state. Example

physical actions are: force, momentum, acceleration, impulse, displacement, velocity.

The class MetaBody is the simulated world, it contains inside bodies, interactions, physi-

cal actions and engines (Fig. B.13). The MetaBody’s Engine classes do the actual processing

of its data (see Sect. B.3).
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Figure B.12: Abstract class PhysicalAction, with examples of concrete derived classes.

Figure B.13: Class MetaBody and container classes owned by it

Figure B.14: One dimensional MetaEngine.

Figure B.15: Two dimensional MetaEngine.
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Engine classes

Every operation concerning data is performed by dedicated to the task Engine. The class

StandAloneEngine performs tasks that depend on any part of data. The class DeuxEx-

Machina performs tasks that depend on conditions from outside.

Multimethod [1] dispatchers (called MetaEngine) perform tasks which are specific to

some kind (or kinds) of data. Each MetaEngine contains EngineUnits that effectively be-

come virtual methods for that specific data. Figure B.14 shows an example of one di-

mensional multimethod. Indexable classes Mesh2D and Box (which inherit from Geomet-

ricalModel class) are drawn on the screen with OpenGL using the corresponding classes

GLDrawMesh2D and GLDrawBox. Figure B.15 shows how an EngineUnit is called depend-

ing on two classes: InteractingGeometry and BoundingVolume. Algorithm constructing axis

aligned bounding box is different for box and for a sphere. Similarly MetaEngine can handle

collision of bodies. Different algorithms are called when Sphere collides with Box or with

another Sphere.
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Appendix C

Quaternion rotations

This appendix briefly explains the basics of quaternion rotations, along with some of the

quaternion algebra. It serves as a short reference to Chapter 4.

There are several different ways to represent a 3D orientation, such as Euler angle and the

rotation matrix. Those methods however suffer the problem with singularities and numerical

instabilities near certain orientation values, such as a north and south pole on a sphere. This

drawback is not present when quaternions are used to represent a 3D orientation. As an

additional bonus, the computational cost of performing the rotation composition is smaller

than a similar operation performed with a 3D rotation matrix.

In mathematics, quaternions are a non-commutative extension of complex numbers. They

were first described by the Irish mathematician Sir William Rowan Hamilton in 1843, and

applied to mechanics in a three–dimensional space. At first, quaternions were regarded as

pathological, because they disobeyed the commutative law of multiplication ab = ba. How-

ever currently they are becoming widely popular for calculations involving three–dimensional

rotations. The quaternion algebra holds a special place in analysis since it is one of only three

finite–dimensional division rings containing the real numbers as a subring. The quaternion

space is often denoted by double–barred letter H after the initial of its inventor. In this thesis,

all quaternions are marked using a math ring symbol above, thus: q̊ ∈ H.

Quaternions’ non–commutative property can be explained by the fact that three dimen-

sional rotations are also not commutative. A simple exercise of applying two rotations to

an asymmetrical object (eg. this thesis) can explain it. First, rotate this thesis 90 degrees

clockwise around the z axis. Next, rotate it 180 degrees clockwise around the x axis. Then

restore the original orientation, so that this text is again readable, and apply those rotations

in the opposite order. This shows that, in general, the composition of two different rotations

around two distinct spatial axes will not commute.

C.1 Definition

Quaternions are a generalization of complex numbers, obtained by adding the elements i, j,

and k to the real numbers, where i, j, and k satisfy following equation:

i2 = j2 = k2 = i jk = −1. (C.1)

Every quaternion is a real linear combination of the basis 1, i, j, and k. Thus every quaternion

is uniquely expressible in the form a+bi+c j+dk where a, b, c, and d are real numbers. The
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equation i jk = −1 can be transformed by first right–multiplying both sides by k, then left–

multiplying both sides by i then, left–multiplying both sides by j, which eventually leads to:

i j = − ji = k,

jk = −k j = i,

ki = −ik = j.

(C.2)

For the purpose of dealing with three–dimensional rotations it is also necessary that the

quaternion is a unit quaternion, thus its components must satisfy the equation

a2 +b2 + c2 +d2 = 1. (C.3)

A quaternion which does not satisfy this condition, although it is still a quaternion, is not

useful for performing three–dimensional rotations. Due to this condition, to avoid numerical

build–up errors, it is a common practice to re–normalize quaternions at frequent intervals,

usually at each calculation step. In this thesis this was not necassary, because each iteration

started using a new identity quaternion.

C.2 Properties

The base algebraic operations ’+’, ’−’ and ’×’ apply to quaternions, respecting Eq. C.2.

The division is performed by multiplying by the inverse quaternion.

The quaternion multiplication is associative:

q̊1 q̊2 q̊3 = (q̊1 q̊2) q̊3 = q̊1 (q̊2 q̊3). (C.4)

The quaternion multiplication is not commutative:

q̊1 q̊2 6= q̊2 q̊1. (C.5)

The conjugate quaternion of a quaternion q̊ = a+bi+ c j +dk is similarly as in algebra of

complex numbers defined as:

q̊∗ = a−bi− c j−dk. (C.6)

The absolute value of a quaternion is defined as:

|q̊| =
√

q̊ q̊∗ =
√

a2 +b2 + c2 +d2. (C.7)

An identity quaternion E̊ is a quaternion that multiplied by any other quaternion gives the

quaternion unchanged

E̊ = 1+0i+0 j +0k. (C.8)

An inverse of a quaternion q̊ = a+bi+ c j +dk is similarly as in algebra of complex num-

bers defined as:

q̊−1 =
q̊∗

|q̊|2
=

a−bi− c j−dk

a2 +b2 + c2 +d2
. (C.9)
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This can be verified by an algebraic multiplication conforming to the rules in Eq. C.2:

q̊−1q̊ = (a−bi− c j−dk)(a+bi+ c j +dk)|q̊|−2

= (a2 +abi+ac j +adk

−bia−b2i2 −bic j−bidk

−c ja− c jbi− c2 j2 − c jdk

−dka−dkbi−dkc j−d2k2)|q̊|−2

= (a2 +abi+ac j +adk

−abi+b2 −bck +bd j

−ac j +bck + c2 − cdi

−adk−bd j + cdi+d2)|q̊|−2

= (a2 +b2 + c2 +d2)|q̊|−2

= 1+0i+0 j +0k = E̊. (C.10)

Also with the unit quaternion restriction of Eq. C.3, the conjugate quaternion equals the

inverse quaternion:

q̊∗ = q̊−1. (C.11)

C.3 Operations concerning rotation

The quaternion addition and substraction has no meaning in describing rotation, because

such resulting quaternion would violate the unit quaternion requirement Eq. C.3.

The composition of two rotations is performed by multiplication of two quaternions q̊1 and q̊2:

q̊3 = q̊1 q̊2. (C.12)

The rotation difference ∆q̊ between two distinct rotations q̊1 and q̊2 is calculated as follows:

∆q̊ = q̊1 q̊−1
2 . (C.13)

To perform a rotation of 3D vector~v = {x,y,z} by a quaternion, the vector is introduced as a

quaternion with its imaginary coefficients equal respectively to x, y, and z:

v̊ = 0+ xi+ y j + zk. (C.14)

Then, the quaternion v̊ (which represents a vector) is rotated by performing a two–side mul-

tiplication, producing quaternion v̊rot (which represents a rotated vector):

v̊rot = q̊ v̊ q̊−1. (C.15)

It can be verified that the resulting quaternion v̊rot has a real value equal to zero, because

the q̊q̊−1 multiplication cancels it. The three imaginary coefficients of v̊rot are the coordinates

of the rotated vector~vrot = {x,y,z}. For convenience, the conversion~v ↔ v̊ is implied, which

allows to write this formula in simplified form, which is not strictly correct:

~vrot = q̊~v q̊−1. (C.16)

To reduce computational effort, this operation is usually done by converting first a quaternion

into a rotation matrix R (see Sect. C.5.2), then by performing multiplication~vrot = R~v.
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C.4 Matrix representation

There are two ways to represent quaternions as matrices, in such a way that the quaternion

addition and multiplication correspond to the matrix addition and matrix multiplication. First

way is to represent it as a 4×4 matrix of real numbers Qr:

Qr =







a −b −c −d

b a −d c

c d a −b

d −c b a







. (C.17)

In this representation, the conjugate of a quaternion (Eq. C.6) corresponds to the transpose

of the matrix. The fourth power of the absolute value of a quaternion is the determinant of

the corresponding matrix.

The second way is to represent as a 2×2 matrix of complex numbers Qc:

Qc =

[
(a+bi) (c+di)

(−c+di) (a−bi)

]

. (C.18)

This representation due to its isomorphism properties is especially useful in quantum me-

chanics for dealing with particle spins.

C.5 Conversions

C.5.1 Euler axis angle

The Euler axis angle representation of rotations uses a unit axis of rotation ~v = {x,y,z}
(where x2 + y2 + z2 = 1) and the angle of rotation α around this axis. The representation of

a quaternion q̊ = a+bi+ c j +dk can be built using the formula:

q̊(~v,α) =







a = cos(α/2)
b = sin(α/2)x

c = sin(α/2)y

d = sin(α/2)z

. (C.19)

Note that such quaternion satisfies a unit quaternion requirement Eq. C.3. If, during calcula-

tions the need arises for building a quaternion from rotations, this method was always used,

becuase it is most efficient time–wise.

The construction of an Euler axis angle from a quaternion is achieved using the following

formula:
α = 2arccos(a) ,

x =
b

sin(α/2)
,

y =
c

sin(α/2)
,

z =
d

sin(α/2)
.

(C.20)

If the rotation angle α = 0, then axis of the rotation can be anything since no rotation occurs.

In this case to avoid the division by zero, the zeros are assigned to x, y and z.
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C.5.2 Rotation matrix

The rotation matrix, also called direction cosine matrix is a 3× 3 matrix that contains

three unit vectors which are a set of new coordinate axes expressed in terms of original

(non–rotated) coordinate axes. When computing a quaternion from the rotation matrix, there

is a sign ambiguity since quaternions q̊ and −q̊ represent the same rotation. One way of

computing the quaternion from the rotation matrix R = [~e1,~e2,~e3] is as follows:

q̊(R) =







a = ±1

2

√

1+R11 +R22 +R33,

b =
1

4a
(R23 −R32),

c =
1

4a
(R31 −R13),

d =
1

4a
(R12 −R21).

(C.21)

There are three other mathematically equivalent ways to compute q̊. A numerical inaccuracy

can be reduced by avoiding situations in which the denominator (in this case a) is close to

zero. One of the other three methods looks as follows:

q̊(R) =







b = ±1

2

√

1+R11 −R22 −R33,

c =
1

4b
(R12 +R21),

d =
1

4b
(R13 +R31),

a =
1

4b
(R23 −R32).

(C.22)

Shoemake [140, 141] has published an efficient algorithm for a fast conversion of rotation

matrix to a quaternion.

The rotation matrix R can be computed from the quaternion q̊ with the formula:

R(q̊) =





a2 +b2 − c2 −d2 2bc−2ad 2ac+2bd

2ad +2bc a2 −b2 + c2 −d2 2cd −2ab

2bd−2ac 2ab+2cd a2 −b2 − c2 +d2



 . (C.23)

To reduce the number of computer operations, it is possible to take advantage of the fact that

q̊ is a unit quaternion:

R(q̊) =





1−2(c2 +d2) 2(bc−ad) 2(ac+bd)
2(ad +bc) 1−2(b2 +d2) 2(cd−ab)
2(bd−ac) 2(ab+ cd) 1−2(b2 + c2)



 . (C.24)



150 APPENDIX C. QUATERNION ROTATIONS

C.5.3 Euler angle

The Euler angle representation of rotation uses three angles φ , θ and ψ respectively named

roll, pitch and yaw or heading, attitude and bank. A quaternion q̊ = a + bi + c j + dk can be

expressed in terms of Euler angles as:

q̊(φ ,θ ,ψ) =







a = − cos((φ −ψ)/2) sin(θ/2),
b = sin((φ −ψ)/2) sin(θ/2),
c = − sin((φ +ψ)/2) cos(θ/2),
d = cos((φ +ψ)/2) cos(θ/2).

(C.25)

A quaternion constructed in this way will satisfy the unit requirement of Eq. C.3.

The Euler angle representation can be calculated from quaternion as follows:

φ = arctan

(

2(ab+ cd)

1−2(b2 + c2)

)

,

θ = arcsin(2(ac−db)) ,

ψ = arctan

(

2(ad +bc)

1−2(c2 +d2)

)

.

(C.26)

The necessity of special handling of a north/south pole due to arctan and arcsin discontinu-

ities will not be discussed here. The reader is referred to [140] for a detailed discussion on

this topic.

C.6 Efficiency

A straightforward implementation of the multiplication in Eq. C.15 requires 56 operations

to be performed by a computer (32 multiplications and 24 additions). It turns out that it

is more efficient to convert the quaternion first into the rotation matrix and then perform

the multiplication. The rotation matrix R in Eq. C.24 requires 12 multiplications and 12

additions to built. Then multiplying it by a vector ~v (using formula ~vrot = R~v) to perform

rotation requires further 9 multiplications and 6 additions which results in 39 operations

total. This is less than original 56 operations. However, it is more costly when compared to

storing rotational operations directly in the rotation matrix (and not using quaternions at all)

which would save 24 operations to perform the conversion.

The saving factor here is that the composition of rotations using quaternions costs 12

additions and 16 multiplications, giving only 28 operations in total. Whereas composing

rotations expressed as rotational matrices is numerically less stable because a numerical

precision error may introduce a matrix skew, especially when combining several rotations.

Renormalizing the matrix afterwards is far more costly than renormalizing a quaternion. A

composition of two rotation matrices costs 18 additions and 27 multiplications, giving totally

45 operations (much more than 28 for quaternions). Such comparison was done by Eberly

in [59].

Concluding, the increased speed and reliability of composing two quaternion rotations

(Eq. C.12) and calculating the rotation difference (Eq. C.13) justifies the cost (24 operations)

of the conversion from the quaternion q̊ to the rotation matrix R. Additionally, quaternions

have a smaller memory footprint of only 4 values instead of 9.
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Further generalizations are possible, like using a pair of quaternions to represent rotation

in a 4D space. An interested reader is referred to literature, like [36, 57–59, 140, 141], for

more information.
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